首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure and function of molluscan metallothioneins (MTs) are still poorly understood. The sea mussel Mytilus galloprovincialis displays two MT isoforms which differ in both primary sequences and physiological functions. MT-10 is the constitutive isoform, whereas MT-20 is mainly induced by cadmium (Cd). Both MTs were produced as recombinant proteins and showed identical Cd content and similar Cd-binding properties. Conversely, circular dichroism disclosed marked differences in the secondary conformations of the two Cd(7)-MTs. The possible relapses of these structural differences on protein stability and function were assessed. MT-10 presented a higher thermal stability and a more compact structure than MT-20, as it was inferred by absorption and emission spectroscopy studies. Moreover, the kinetics of Cd-release clearly indicated that MT-10 is much more sensitive to oxidation than is MT-20. The observed differences between MT-10 and MT-20 are discussed in terms of the different physiological roles exerted by the two isoforms in mussel.  相似文献   

2.
Shi YB  Fang JL  Liu XY  Du L  Tang WX 《Biopolymers》2002,65(2):81-88
The secondary structures of porcine brain Cu(4)Zn(3)-metallothionein (MT)-III and Cd(5)Zn(2)MT-I, Cd(5)Zn(2)MT-II, and Zn(7)MT-I from rabbit livers in the solid state are investigated by Fourier transform IR spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman). The Cu(4)Zn(3)MT-III contains 26-28% beta-turns and half-turns, 13-14% 3(10)-helices, 47-49% random coils, and 11-12% beta-extended chains. The structural comparison of porcine brain Cu(4)Zn(3)MT-III with rabbit liver Cd(5)Zn(2)MT-I (II) and Zn(7)MT-I shows that the contents of the random coil structure are obviously increased. The results indicate that the insert of an acidic hexapeptide in the alpha domain of Cu(4)Zn(3)MT-III possibly forms an alpha helix. However, because the bands assigned to the alpha-helix and random coil structures are overlapped in the spectra, the content of random coil structures in Cu(4)Zn(3)MT-III is therefore higher than those in Cd(5)Zn(2)MT-I, Cd(5)Zn(2)MT-II, and Zn(7)MT-I.  相似文献   

3.
Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.  相似文献   

4.
Metallothionein-3 (MT-3) is a brain-specific isoform of metallothioneins, which is down-regulated in Alzheimer's disease (AD), inhibits the growth of neurons in vitro, and differs from common MTs also in gene regulation. To elucidate the differences in structure and function between MT-3 and common MTs, Zn2+ and Cd2+ binding to MT-3 and MT-1 were studied using electrospray ionization time of flight mass spectrometry (ESI TOF MS) at pH values between 7.5 and 2.7. The metal binding properties of MT-3 differ considerably from those of MT-1. After reconstitution with a metal excess, metallated MT-3 exists as a mixture of Zn7MT-3 (or Cd7MT-3, respectively) and several metalloforms with stoichiometries below and above seven. In contrast, MT-1 exists as a single Zn7MT-1 (or Cd7MT-1). Lowering of pH leads to a stepwise release of metals from metallated MT-3, first from extra sites, then from the 3-metal cluster and finally from the 4-metal cluster. At acidic pH values the 4-metal cluster of MT-3 is slightly more stable than that of MT-1. The results demonstrate higher structural plasticity, dynamics and metal binding capacity of MT-3 than of MT-1, which makes MT-3 suitable as a zinc buffer-transfer molecule in zinc-enriched neurons functioning at conditions of fluctuating zinc concentrations.  相似文献   

5.
6.
Zinc metabolism in the cells is largely regulated by ubiquitous small proteins, metallothioneins (MT). Metallothionein-3 is specifically expressed in the brain and is down regulated in Alzheimer's disease. We demonstrate by mass spectrometry that MT-3, in contrast to common MTs, binds Zn(2+) and Cd(2+) in a noncooperative manner and can also bind higher stoichiometries of metals than seven. MT-3 reconstituted with seven metals exists in a dynamic equilibrium of different metalloforms, where the prevalent metalloform is Me(7)MT-3, but metalloforms with 6, 8, and even 9 metals are also present. The results from pH and stability studies demonstrate that the heterogeneity of metalloforms originates from the N-terminal beta-cluster, whereas the C-terminal alpha-cluster of MT-3 binds four metal ions such as that of common MTs. Experiments with EDTA demonstrate that the beta-cluster of ZnMT-3 has a higher metal transfer potential than the beta-cluster of Zn(7)MT-2. Moreover, ZnMT-3 loses metals during ultrafiltration. MT-3, reconstituted with an excess of Zn(2+) or Cd(2+), exists as a dynamic mixture of metalloforms with higher than 7 metal stoichiometries (8-11). Such forms of ZnMT-3 are unstable and decompose partly already during a rapid gel filtration, whereas CdMT-3 forms are more stable. Extra metal ions may bind to the beta-cluster region as well as to the carboxylates of MT-3. The specific metal-binding properties of MT-3 could be functionally implemented for buffering of fluctuating concentrations of zinc in zincergic neurons and for transfer of zinc to synaptic vesicles.  相似文献   

7.
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.  相似文献   

8.
Metallothioneins (MTs) are crucial proteins in all organisms for the regulation of essential metals and the detoxification of heavy metals. Many studies have estimated MT levels in mussel tissues to detect marine metal pollution. In this study, we investigated the MT gene structures of the forms present in Mytilus edulis (blue mussel). One MT-10 (2413 bp) gene and one MT-20 (1906 bp) gene were obtained. These MT genes contain three exons and two long introns. The splicing signals for MT-10 and MT-20 were GTA(T/A)GT-(C/T)AG. The structural organization (length of intron, splicing signals, AT content) of MT-10 and MT-20 is compared with other MT genes.  相似文献   

9.
Metallothionein (MT) synthesis in rabbit kidney-derived RK-13 cells was studied. In response to Cd2+, RK-13 cells synthesized proteins closely similar in chromatographic and electrophoretic behaviors to the liver MTs induced in Cd2+-injected rabbit. These proteins were specifically immunoprecipitated by anti-mouse liver MT-II serum. The rate of RK-13 thionein (apoprotein of MT) synthesis rapidly increased after exposure to 1 microgram/ml of Cd2+, and reached the maximum in 7 h. The dose-response curve for the synthesis was biphasic; a sharp increase up to 0.5 microgram/ml and a slower increase at higher concentrations. RK-13 cells retained kidney-specific properties in terms of responsiveness of thionein synthesis to inducers; The MTs were inducible also by Zn2+ and probably by Hg2+, but not by dexamethasone. This system would therefore be a useful model in vitro for studying the regulation of MT synthesis in kidney cells.  相似文献   

10.
A rapid, reproducible, and sensitive high-performance liquid chromatography (HPLC) method for the determination of the concentrations of metallothionein-I (MT-I) and metallothionein-II (MT-II) in rat liver has been developed. Metallothioneins (MTs) were separated and quantitated by anion-exchange high-performance liquid chromatography coupled with atomic absorption spectrophotometry (AAS). Purified rat liver MT-I and MT-II, used as standards for developing the method, were easily resolved, eluting at 7.5 and 10.4 min, respectively. To establish standard curves, protein concentrations of solutions of the purified MTs were determined by the Kjeldahl method for the determination of nitrogen, after which the standards were saturated with Cd (final concentration of 50 ppm Cd). Rat liver cytosols obtained from untreated and Cd- or Zn-treated rats were prepared for HPLC-AAS analysis by saturation with Cd (50 ppm Cd) followed by heat denaturation (placing in a boiling water bath for 1 min). Based on the method of standard additions, recovery of MTs exceeded 95% and repeated injection of a sample yielded a coefficient of variance of approximately 2%. A detection limit of 5 micrograms MT/g liver was established for the method. Only MT-II was detected in untreated rats, whereas following exposure to Cd or Zn, both forms of MTs were detected. Concentrations of total MTs in liver of untreated and Cd- or Zn-treated rats were also determined by the Cd/hemoglobin radioassay (which fails to distinguish MT-I from MT-II) and indicated that results obtained with the HPLC-AAS method compared favorably to the Cd/hemoglobin radioassay. Thus, the HPLC-AAS method for quantitating MT-I and MT-II offers the advantage of determining the concentrations of both proteins in tissues and should be useful for studying the regulation of MT-I and MT-II.  相似文献   

11.
We have used free-solution capillary electrophoresis (FSCE) to separate three distinct mouse metallothionein (MT) isoforms, MT-1, MT-2 and MT-3. FSCE was conducted in an uncoated fused-silica capillary (57 cm × 50 μm I.D., 50 cm to detector) using 50 mM sodium phosphate buffer adjusted to pH 7.0 or 2.0. At neutral pH, each of the three isoform peaks were well resolved from a mixture with the order of migration (MT-1> MT-2> MT-3) related to the net negative charge on the protein. At acidic pH, the migration order was reversed with MT-3 migrating fastest, suggesting MT-3 had a higher net positive charge than MT-2 or MT-1. UV absorbance spectra (190–300 nm) confirmed the presence of Zn in MT-1 and MT-2. MT-3, which was saturated with Cd to stabilize the protein, gave a spectrum characteristic of the Cd---S charge transfer (shoulder at ca. 250 nm). At pH 2.0, the absorbance spectra for all three mouse MTs were characteristic of the metal-free form of the protein (apothionein). Thus, FSCE conducted at neutral pH separates MT isoforms with their metals intact, whereas at pH 2.0, both the Zn and the Cd dissociate from the protein during the run.  相似文献   

12.
Metallothioneins (MTs) were characterised in the kidneys of a white-sided dolphin Lagenorhynchus acutus stranded along the Belgian coast, displaying high levels of cadmium (Cd) and mercury (Hg) in liver and kidney. The protein has two isoforms: MT-1 and MT-2. MT-1 binds Cu, Zn, Hg and Cd, while MT-2 only binds Zn, Hg and Cd. This suggests different metabolic functions for the two isoforms: MT-1 is mainly involved in Cu homeostasis; MT-2, which was four-fold more abundant than MT-1, detoxifies most of the accumulated cadmium.  相似文献   

13.
Two homogenous fractions of hepatic metallothioneins ((Cd,Zn) MT-1 and (Cd,Zn) MT-2) and renal metal binding proteins ((Bi,Cu) BP-1 and (Bi,Cu) BP-2) were isolated from rats exposed to heavy metals and specific antisera to them were produced in rabbits.These antisera were tested by immunodiffusion and immunoelectrophoresis for their ability to bind different fractions of hepatic Cd,Zn -metallothionein and renal (Bi,Cu)-, (Hg,Cu)- and (Cd,Cu)-binding proteins. It was found that anti (Bi,Cu) BP antisera did not cross-react with hepatic (Cd,Zn) MT-1 and (Cd,Zn) MT-2. Strong immunological cross-reactions were detected between anti (Bi,Cu) BP antisera and individual forms of (Cd,Cu)-, (Hg,Cu)- and (Bi,Cu)-binding proteins isolated from rat kidneys.  相似文献   

14.
Metallothioneins (MTs) have important roles in the homeostasis of essential metals and in the detoxication of heavy metals. They also represent a potential indicator of aquatic contamination by metals. Routine methods are needed for MTs quantification in ecotoxicological studies. This paper investigates the possibility to use the spectrofluorescent properties of Cu-MTs for MTs quantification. Cu displacement of metals coordinated to MTs and spectrofluorimetric determination of the obtained Cu-MTs was tested with commercial MTs and Cu2+-induced MTs in roach liver (Rutilus rutilus). Results of this original and simple spectrofluorimetric quantification of MTs presented a good correlation with data obtained with SH quantification, but not with metal summation evaluation of MTs (analysis of Zn, Cu and Cd coordinated to MTs). The three methods showed an clear induction of MTs in roach liver after 7 days of Cu2+ exposure. After 14 days of contamination, a reduction of hepatic MTs content was observable and not correlated to liver recovery. Results show that this low cost spectrofluorimetric method is useful to quantify MTs.  相似文献   

15.
16.
Mammalian metallothioneins (MTs) are involved in cellular metabolism of zinc and copper and in cytoprotection against toxic metals and reactive oxygen species. MT-3 plays a specific role in the brain and is down-regulated in Alzheimer's disease. To evaluate differences in metal binding, we conducted direct metal competition experiments with MT-3 and MT-2 using electrospray ionization mass spectroscopy (ESI-MS). Results demonstrate that MT-3 binds Zn2+ and Cd2+ ions more weakly than MT-2 but exposes higher metal-binding capacity and plasticity. Titration with Cd2+ ions demonstrates that metal-binding affinities of individual clusters of MT-2 and MT-3 are decreasing in the following order: four-metal cluster of MT-2>three-metal cluster of MT-2 approximately four-metal cluster of MT-3>three-metal cluster of MT-3>extra metal-binding sites of MT-3. To evaluate the reasons for weaker metal-binding affinity of MT-3 and the enhanced resistance of MT-3 towards proteolysis under zinc-depleted cellular conditions, we studied the secondary structures of apo-MT-3 and apo-MT-2 by CD spectroscopy. Results showed that apo-MT-3 and apo-MT-2 have almost equal helical content (approximately 10%) in aqueous buffer, but that MT-3 had slightly higher tendency to form alpha-helical secondary structure in TFE-water mixtures. Secondary structure predictions also indicated some differences between MT-3 and MT-2, by predicting random coil for common MTs, but 22% alpha-helical structure for MT-3. Combined, all results highlight further differences between MT-3 and common MTs, which may be related with their functional specificities.  相似文献   

17.
Redox properties of metallothioneins (MTs) and Cu in the cytosol from Long-Evans Cinnamon (LEC) rat livers 13 weeks after birth were investigated. MTs from LEC rat livers contain 8 g atoms of Cu and 1 g atom of Zn per mole of protein (Cu(I)8-MTs). Titration of Cu(I)8-MTs with CuCl2 indicates that Cu(I)8-MTs were able to reduce further 2-g atoms of cupric ions per mole MTs as bound form. Hg2+-induced hydroxyl radical generation from Cu(I)8-MTs was demonstrated by ESR using the spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The intensity of DMPO-OH signal from Cu-loaded MTs was increased with the increasing number of Cu in MTs. The used cytosol fraction contained 1.37 mM total Cu and 5 mM DTNB titrable-SH groups has a potential to reduce 2 mM CuCl2. No ESR signal due to Cu2+ was also detected with LEC rat liver cytosol, whereas strong Cu2+ signal appeared by the addition of HgCl2. The rate constants for the reaction of Cu(I)8-MTs with superoxide and hydroxyl radicals were estimated to be 2 x 10(6) and > or = 10(12) M(-1)s(-1), respectively, from competition kinetics. Cu2+-catalyzed oxidation of DNA was strongly inhibited both in the presence of Cu-unsaturated MTs and GSH. The results suggest that Cu(I)8-MTs from LEC rat livers just before hepatitis still act as antioxidants.  相似文献   

18.
Metallothionein (MT) is a suitable model for investigating molecular interactions relating to the handling of metals in cells. However, the production of functional MT proteins in microorganisms has been limited because of the instability of MT—the thiol group of cysteine is easily oxidized and proteolysis occurs. To increase the binding ability and to stabilize MT, we designed genes for dimeric and tetrameric MT and the genes were successfully overexpressed in Escherichia coli to generate functional oligomeric MTs. A human MT-II (hMT-II) synthesized with prokaryotic codons, a linker encoding a glycine tripeptide, and Met-deficient hMT-II was ligated to create a dimeric MT, from which a tetrameric MT was then constructed. The increased molecular size of the constructs resulted in improved stability and productivity in E. coli. Cells of E. coli carrying the oligomeric MT genes showed resistance toward Zn and Cd toxicity. The oligomeric proteins formed inclusion bodies, which were dissolved with dithiothreitol, and the purified apo-MTs were reconstituted with Cd or Zn ions under reducing conditions. The dimeric and tetrameric MT proteins exhibited both Cd and Zn binding activities that were, respectively, two and four times higher than those of the hMT-II monomer protein. These stable oligomeric MTs have potential as a biomaterial for uses such as detoxification and bioremediation for heavy metals.  相似文献   

19.
Electrospray ionization (ESI) mass spectra of both well-characterized and novel metallothioneins (MTs) from various species were recorded to explore their metal-ion-binding modes and stoichiometries. The ESI mass spectra of the zinc- and cadmium-binding MTs showed a single main peak corresponding to metal-to-protein ratios of 4, 6, or 7. These findings combined with data obtained by other methods suggest that these MTs bind zinc or cadmium in a single predominant form and are consistent with the presence of three- and four-metal clusters. An unstable copper-specific MT isoform from Roman snails (Helix pomatia) could be isolated intact and was shown to preferentially bind 12 copper ions. To obtain additional information on the formation and relative stability of metal-thiolate clusters in MTs, a mass spectrometric titration study was conducted. One to seven molar equivalents of zinc or of cadmium were added to metal-free human MT-2 at neutral pH, and the resulting complexes were measured by ESI mass spectrometry. These experiments revealed that the formation of the four-metal cluster and of the thermodynamically less stable three-metal cluster is sequential and largely cooperative for both zinc and cadmium. Minor intermediate forms between metal-free MT, Me4MT, and fully reconstituted Me7MT were also observed. The addition of increasing amounts of cadmium to metal-free blue crab MT-I resulted in prominent peaks whose masses were consistent with apoMT, Cd3MT, and Cd6MT, reflecting the known structure of this MT with two Me3Cys9 centers. In a similar reconstitution experiment performed with Caenorhabditis elegans MT-II, a series of signals corresponding to apoMT and Cd3MT to Cd6MT species were observed.  相似文献   

20.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号