首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine possible mechanisms involved in resistance of the ovine corpus luteum to the luteolytic activity of prostaglandin (PG)F(2alpha), the enzymatic activity of 15-hydroxyprostaglandin dehydrogenase (PGDH) and the quantity of mRNA encoding PGDH and cyclooxygenase (COX-2) were determined in ovine corpora lutea on Days 4 and 13 of the estrous cycle and Day 13 of pregnancy. The corpus luteum is resistant to the action of PGF(2alpha) on Days 4 of the estrous cycle and 13 of pregnancy while on Day 13 of the estrous cycle the corpus luteum is sensitive to the actions PGF(2alpha). Enzymatic activity of PGDH, measured by rate of conversion of PGF(2alpha) to PGFM, was greater in corpora lutea on Day 4 of the estrous cycle (P < 0.05) and Day 13 of pregnancy (P < 0.05) than on Day 13 of the estrous cycle. Levels of mRNA encoding PGDH were also greater in corpora lutea on Day 4 of the estrous cycle (P < 0. 01) and Day 13 of pregnancy (P < 0.01) than on Day 13 of the estrous cycle. Thus, during the early estrous cycle and early pregnancy, the corpus luteum has a greater capacity to catabolize PGF, which may play a role in the resistance of the corpus luteum to the actions of this hormone. Levels of mRNA encoding COX-2 were undetectable in corpora lutea collected on Day 13 of the estrous cycle but were 11 +/- 4 and 44 +/- 28 amol/microgram poly(A)(+) RNA in corpora lutea collected on Day 4 of the estrous cycle and Day 13 of pregnancy, respectively. These data suggest that there is a greater capacity to synthesize PGF(2alpha), early in the estrous cycle and early in pregnancy than on Day 13 of the estrous cycle. In conclusion, enzymatic activity of PGDH may play an important role in the mechanism involved in luteal resistance to the luteolytic effects of PGF(2alpha).  相似文献   

2.
Serum estradiol-17beta concentrations were determined during silent estrus in the mare. Relationships between serum estradiol-17beta concentration, corpus luteum regression, follicular development, ovulation, prostaglandin treatment and behavioral estrus were investigated. The expression of behavioral estrus was found to be related to the patterns of progesterone and estradiol-17beta secretion during the periovulatory period. When compared to normal estrous cycles, silent estrus was accompanied by a significantly lower maximum serum estradiol-17beta concentration (47.8 vs 34.6 pg/ml), a significantly longer interval from maximum estradiol-17beta concentration to ovulation (1.7 vs 4.0 days), and a significantly shorter interval from corpus luteum regression to ovulation (5.3 vs 2.8 days). Silent estrus following prostaglandin treatment was related to a significantly shorter interval from prostaglandin treatment to ovulation (3.6 +/- 0.4 days) than from normal corpus luteum regression to ovulation (5.3 +/- 0.3 days). Silent estrus appeared to be related to changes in follicular estradiol-17beta secretion and to the pattern of its secretion as related to regression of the corpus luteum. There appeared to be not only less estradiol-17beta present, but also less time available after luteal regression for it to interact with the central nervous system to elicit the changes necessary to cause behavioral estrus. There fore, unusual relationships between luteal function and folliculogenesis can result in one type of silent estrus. Significant correlations (P<0.05) were found between follicle size and serum estradiol-17beta concentration whenever behavioral estrus occurred [follicle diameter in mm = 0.96 (serum estradiol-17beta in pg/ml) + 6.08 and 0.73 (serum estradiol-17beta + 13.32 for control and normal estrus following prostaglandin treatment groups, respectively]. During silent estrus, however, no significant correlations between follicle size and serum estradiol-17beta concentration were observed.  相似文献   

3.
The metabolism of pregnenolone-7alpha-3H and progesterone-4-14C by human corpora lutea tissue of menstrual cycles and pregnancy was studied. In the incubations, equimolar mixtures of pregnenolone-7alpha-3H and progesterone-4-14C were used as substrates. Three corpora lutea of cycles were used as minced tissue. From those corpora lutea progesterone, 17-hydroxyprogesterone and androstenedione were formed, although no estrogens were formed. One corpus luteum of cycle and one corpus luteum of pregnancy were used as homogenated tissue, and those formed estrone and estradiol as well as the same three delta4-metabolites. The corpus luteum of cycle also formed testosterone. All metabolites including estrogens showed the lower 3H to 14C ratio than the starting ratio. 17-hydroxypregnenolone in only one corpus luteum, and no delta5-metabolites in the other four corpus luteum were identified. It is therefore proposed that the major pathway for estrogen formation in human corpus luteum is pregnenolone yields progesterone yields 17-hydroxyprogesterone yields androstenedione (or testosterone) yields estrone and estradiol.  相似文献   

4.
Expression of intercellular adhesion molecule-1 (ICAM-1) and the accumulation of monocytes/macrophages are inflammatory events that occur during PRL (PRL)-induced regression of the rat corpus luteum. Here we have compared the ability of prostaglandin F2alpha (PGF) and PRL to induce, in rat corpora lutea, inflammatory events thought to perpetuate luteal regression. Immature rats were ovulated with eCG-hCG and then hypophysectomized (Day 0), which resulted in a single cohort of persistent, functional corpora lutea. On Days 9-11, the rats received twice daily injections of saline, PGF (Lutalyse, 250 microg/injection), or PRL (312 microg/injection) to induce luteal regression. Surprisingly, luteal weight and plasma progestin concentrations (progesterone and 20alpha-dihydroprogesterone) did not differ between PGF-treated rats and controls; whereas both luteal weight and plasma progestins declined significantly in PRL-treated rats. Furthermore, corpora lutea of PGF-treated rats and controls contained relatively minimal ICAM-1 staining and few monocytes/macrophages. In contrast, but as expected, corpora lutea of PRL-treated rats stained intensely for ICAM-1 and contained numerous monocytes/macrophages. In an additional experiment, there was no indication that luteal prostaglandin F2alpha receptor mRNA diminished as a result of hypophysectomy. These findings suggest that prolactin, not PGF, induces the inflammatory events that accompany regression of the rat corpus luteum.  相似文献   

5.
Corpora lutea were obtained from wallabies at different stages of pregnancy, following removal of pouch young to initiate embryonic development. Progesterone was present at a concentration of 11.3 ng/mg in quiescent corpora lutea from lactating animals. Progesterone values rose with increasing corpus luteum weight to reach a maximum of 40--50 ng/mg in corpora lutea weighing 50--60 mg. Total progesterone reached a maximum of 1500 +/- 300 (s.e.m.) ng at Days 21--23 after removal of pouch young, but fell markedly at Days 24 and 25 (900 +/- 150 ng) immediately before parturition.  相似文献   

6.
By day-90, the placenta secretes half of the circulating progesterone and 85% of the circulating estradiol-17beta [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22; Weems YS, Vincent DL, Nusser K, et al. Effects of prostaglandin F(2alpha) (PGF(2alpha)) on secretion of estradiol-17beta and cortisol in 90-100 day hysterectomized, intact, or ovariectomized pregnant ewes. Prostaglandins 1994;48:139-57]. Ovariectomy (OVX) or prostaglandin (PG) F(2alpha) (PGF(2alpha)) does not abort intact or OVX 90-day pregnant ewes and PGF(2alpha) regresses the corpus luteum, but does not affect placental progesterone secretion in vivo [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22]. Luteal progesterone secretion in vitro at day-90 of pregnancy in ewes is regulated by PGE(1)and/or PGE(2), not by ovine luteinizing hormone (LH; 3). Concentrations of PGE in uterine or ovarian venous plasma averaged 6 ng/ml at 90-100 days of pregnancy in ewes [Weems YS, Vincent DL, Tanaka Y, Nusser K, Ledgerwood KS, Weems CW. Effect of prostaglandin F(2alpha) on uterine or ovarian secretion of prostaglandins E and F(2alpha) (PGE; PGF(2alpha)) in vivo in 90-100 day hysterectomized, intact or ovariectomized pregnant ewes. Prostaglandins. 1993;46:277-96]. Ovine placental PGE secretion is regulated by LH up to day-50 and by pregnancy specific protein B (PSPB) after day-50 of pregnancy [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73]. Indomethacin (INDO), a prostaglandin synthesis inhibitor [Lands WEM. The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 1979;41:633-46], lowers jugular venous progesterone [Bridges PJ, Weems YS, Kim L, et al. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24] and inferior vena cava PGE of pregnant ewes with ovaries by half at day-90 [Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. In addition, treatment of 90 day ovine diced placental slices with androstenedione in vitro increased placental estradiol-17beta, but treatment with PGF(2alpha)in vitro did not decrease placental progesterone secretion, which indicates that ovine placenta progesterone secretion is resistant to the luteolytic action of PGF(2alpha) [Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Vincent DL, Weems CW. Secretion of progesterone, estradiol-17beta, prostaglandins (PG) E (PGE), F(2alpha) (PGF(2alpha)), and pregnancy specific protein B (PSPB) by day 90 intact or ovariectomized pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:139-48]. This also explains why ovine uterine secretion of decreased around day-50 [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73], when placental estradiol-17beta secretion is increasing [Weems C, Weems Y, Vincent D. Maternal recognition of pregnancy and maintenance of gestation in sheep. In: Reproduction and animal breeding: advances and strategies. Enne G, Greppi G, Lauria A, editors, Elsevier Pub., Amsterdam 1995. p. 277-93]. Treatment of 90 day pregnant ewes with estradiol-17beta+ PGF(2alpha), but not either treatment alone, caused a linear increase in both estradiol-17beta and PGF(2alpha) and ewes were aborting [Bridges PJ, Weems YS, Kim L, Sasser RG, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24; Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. Pregnant ewes OVX on day 83 of pregnancy and placental slices cultured in vitro secretes 2-3-fold more estradiol-17beta, PSPB, PGE, and progesterone than placental slices from 90 day intact pregnant ewes, but placental PGF(2alpha) secretion by placental slices from intact or OVX ewes did not change [Denamur R, Kann G, Short R V. How does the corpus luteum of the sheep know that there is an embryo in the uterus? In: Pierrepont G, editor. Endocrinology of pregnancy and parturition, vol. 2. Cardiff, Wales, UK: Alpha Omega Pub Co.; 1973. p. 4-38]. The objective of these experiments was to determine what regulates ovine placental progesterone and estradiol-17beta secretion at day-90 of pregnancy, since the hypophysis [Casida LE, Warwick J. The necessity of the corpus luteum for maintenance of pregnancy in the ewe. J Anim Sci 1945;4:34-9] or ovaries [Weems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006;171:206-28] are not necessary after day-55 to maintain pregnancy. In Experiment 1, diced placental slices from day-90 intact or OVX pregnant ewes that were ovariectomized or laparotomized and ovaries were not removed on day 83 were collected on day-90 and incubated in vitro in M-199 with Vehicle, ovine luteinizing hormone (oLH), ovine follicle stimulating hormone (oFSH), ovine placental lactogen (oPL), PGE(l), PGE(2), PGD(2), PGI(2), insulin-like growth factor (IGF) 1 or 2 (IGF(l); IGF(2)), leukotriene C(4) (LTC(4)), platelet activating factor (PAF) 16 or 18 (PAF-16; PAF-18) at doses of 0, 1, 10, or 100ng/ml for 4h. In Experiment 2, placental slices from day-90 intact and OVX (intact or OVX laporotomized 7 days earlier) pregnant ewes were incubated in vitro with vehicle, INDO, Meclofenamate (MECLO), PGE(l), PGE(2), INDO+PGE(1), MECLO+PGE(l), INDO+PGE(2), or MECLO+PGE(2) for 4h. Media were analyzed for progesterone, estradiol-17beta, PGE, or PGF(2alpha) by RIA. Hormone data in media were analyzed in Experiment 1 by a 2x3x13 and in Experiment 2 by a 2x9 Factorial Design for ANOVA. In Experiment 1, placental progesterone, PGE, or estradiol-17beta secretion were increased (P< or =0.05) two-fold by OVX. Progesterone was not increased (P> or =0.05) by any treatment other than OVX and only FSH increased (P< or =0.05) estradiol-17beta secretion by placental slices in both OVX and intact ewes 90-day pregnant ewes. In Experiment 2, INDO or MECLO decreased (P< or =0.05) placental progesterone secretion by 88% but did not decrease (P> or =0.05) placental estradiol-17beta secretion from intact or OVX ewes. PGE(l) or PGE(2) increased (P< or =0.05) progesterone secretion only in ewes treated with INDO or MECLO. It is concluded that FSH probably regulates day-90 ovine placental estradiol-17beta secretion, while PGE(l) or PGE(2) regulates day-90 placental progesterone secretion.  相似文献   

7.
One objective of this experiment was to evaluate our hypotheses that estradiol-17beta regulates secretion of pregnancy specific protein B (PSPB) and that secretion of progesterone during pregnancy is regulated by a prostanoid by examining the effects of prostaglandin F2alpha (PGF2alpha), a luteolyic agent; indomethacin, a prostanoid synthesis inhibitor; tamoxifen, an estrogen receptor antagonist; estradiol 17-beta; and interaction of these factors on the incidence of abortion and progesterone and PSPB secretion. Another objective was to determine if there is a luteal source of PSPB. Weights of corpora lutea were decreased (P < or = 0.05) by PGF2alpha, indomethacin, PGF2alpha + tamoxifen, PGF2alpha + indomethacin, and PGF2alpha + estradiol-17beta but not (P > or = 0.05) by tamoxifen or estradiol-17beta alone. No ewe treated with PGF2alpha alone aborted (P > or = 0.05). Forty percent of ewes treated with PGF2alpha + estradiol-17beta aborted (P < or = 0.05), but ewes were not aborted by any other treatment within the 72-h sampling period. Profiles of progesterone in jugular venous blood differed (P < or = 0.05) among control, indomethacin-, tamoxifen-, and PGF2alpha + indomethacin-treated ewes. Progesterone in jugular venous blood of control ewes decreased (P < or = 0.05) by 24 h, followed by a quadratic increase (P < or = 0.05) from 24 to 62 h. Progesterone in jugular venous blood of indomethacin-, PGF2alpha-, PGF2alpha- + tamoxifen-, PGF2alpha + indomethacin-, PGF2alpha + estradiol-17beta-, and tamoxifen-treated ewes was reduced (P < or = 0.05) by 18 h and did not vary (P > or = 0.05) for the remainder of the 72-h sampling period. Progesterone in vena cava and in uterine venous blood was reduced (P < or = 0.05) at 72 h in PGF2alpha-, indomethacin-, tamoxifen-, PGF2alpha + indomethacin-, PGF2alpha + tamoxifen-, and PGF2alpha + estradiol-17beta-treated ewes. Weights of placentomes did not differ among treatment groups (P > or = 0.05). Profiles of PSPB in inferior vena cava blood differed (P < or = 0.05) among control, estradiol-17beta-, indomethacin-, tamoxifen-, PGF2alpha + indomethacin-, and PGF2alpha + tamoxifen-treated 88- to 90-day pregnant ewes. Concentrations of PSPB in inferior vena cava blood were increased (P < or = 0.05) in indomethacin-, estradiol-17beta-, tamoxifen-, PGF2alpha + tamoxifen-, and PGF2alpha + indomethacin-treated 88- to 90-day pregnant ewes within 6 h and did not vary (P > or = 0.05) for the remainder of the 72-h sampling period. Concentrations of PSPB in uterine venous blood of indomethacin-, tamoxifen-, PGF2alpha + tamoxifen-, and PGF2alpha + indomethacin-treated ewes were greater (P < or = 0.05) at 72 h than at 0 h. PSPB in ovarian venous blood did not differ (P > or = 0.05) adjacent or opposite to the ovary with the corpus luteum. It is concluded from these data that estrogen regulates placental secretion of PSPB and that a prostanoid, presumably prostaglandin E, regulates placental secretion of progesterone during 88-90 days of gestation in sheep and that there is no luteal source of PSPB.  相似文献   

8.
In hypophysectomized rats, prolactin induces regression of the corpora lutea. Luteal regression is accompanied by infiltration of monocytes/macrophages, declines in luteal mass and plasma progestins, and increased staining for monocyte chemoattractant protein-1 (MCP-1). We investigated whether similar events are induced during the estrous cycle, after the proestrous prolactin surge. Rats were killed on proestrus or on estrus, and one ovary was frozen for immunohistochemical detection of MCP-1, monocytes/macrophages (ED1-positive), and differentiated macrophages (ED2-positive) and for in situ detection of apoptotic nuclei. Corpora lutea of the current (proestrus) or preceding (estrus) cycle were dissected from the ovaries of additional rats and frozen for the same analyses and for determination of total protein content. In sections of whole ovaries, intensity and distribution of MCP-1 staining were increased in corpora lutea of multiple ages on estrus as compared to proestrus, as were numbers of differentiated macrophages and apoptotic nuclei per high-power field. Sections of isolated corpora lutea showed these increases on estrus, and the number of monocytes/macrophages per high-power field was also significantly increased. Accompanying these inflammatory/immune events, the corpora lutea on estrus showed decreased weight and total protein per corpus luteum, as compared to corpora lutea on proestrus. These changes are consistent with a proposed role for prolactin in the initiation of luteal apoptosis and of a sequence of inflammatory/immune events that accompany regression of the rat corpus luteum during the normal estrous cycle.  相似文献   

9.
Bovine ovaries were obtained from the abattoir and corpora lutea were classified as: (1) early luteal phase (approximately Days 1-4); (2) mid-luteal phase (Days 5-10); (3) late luteal phase (Days 11-17); (4) regressing (Days 18-20) and (5) pregnant (Days 90-230). In addition, preovulatory follicles and whole ovaries without luteal tissue were collected. Concentrations of oxytocin, vasopressin, bovine neurophysin I and progesterone were measured in each corpus luteum by radioimmunoassay. Progesterone and neurophysin I levels increased from Stage 1 to Stage 2, plateaued during Stage 3 and declined by Stage 4. Oxytocin and vasopressin concentrations increased from Stage 1 to Stage 2 but declined during Stage 3 and were low (oxytocin) or undetectable (vasopressin) in follicles, whole ovaries and pregnancy corpora lutea. Therefore the concentrations of both peptide hormones were maximal during the first half of the cycle and declined before those of progesterone. The high concentration of oxytocin within the corpus luteum coupled with the presence of bovine neurophysin I suggests that oxytocin is synthesized locally.  相似文献   

10.
The expression of IGF-I in bovine luteal tissue was demonstrated by parallel measurement of IGF-I tissue concentration and its mRNA; highest synthesis was observed during Days 12-17 of the cycle and the first months of pregnancy. Tissue levels of IGF-I increased from Days 1-5 to Days 12-17 of the cycle followed by a rapid decrease at luteolysis; there was a continuous decline from early pregnancy until Months 6-9. Microdialysis perfusion experiments with corpora lutea in vitro at Days 8-11 of the cycle revealed a major effect: release of progesterone and oxytocin were highly stimulated in a dose-dependent manner. We suggest that IGF-I could be important in regulating the function of the bovine corpus luteum and may act in an autocrine/paracrine way.  相似文献   

11.
J L Pate 《Prostaglandins》1988,36(3):303-315
The objective of the present study was to investigate the influence of progesterone on prostaglandin synthesis by the corpus luteum (CL). Corpora lutea were obtained from dairy cows on days 4, 6, 10, and 18 of the estrous cycle, dissociated, and placed in serum-free culture. The addition of luteinizing hormone (LH) resulted in a slight, but non-significant (p greater than 0.05), increase in levels of 6-keto-PGF1 alpha, and had no effect on PGF2 alpha. Progesterone treatment caused a significant, dose-dependent decrease in both PGF2 alpha and 6-keto-PGF1 alpha in 6-day and 10-day corpora lutea, but not in 4-day or 18-day corpora lutea. In the 6- and 10-day corpora lutea, progesterone treatment resulted in a greater inhibition of PGF2 alpha than 6-keto-PGF1 alpha production. Therefore, progesterone treatment brought about an increase in the 6-keto-PGF1 alpha to PGF2 alpha ratio in these cells (12.9 vs. 21.3). It is concluded from these studies that progesterone can modulate luteal prostacyclin and PGF2 alpha synthesis, suggesting an interaction of progesterone and prostaglandin production within the corpus luteum.  相似文献   

12.
The distribution of a prostaglandin F2alpha receptor in various subcellular fractions from bovine corpora lutea obtained by differential and gradient centrifugation paralleled very closely the distribution in these fractions of 5'-nucleotidase, a marker enzyme for plasma membranes. The fractions most enriched in the receptor and 5'-nucleotidase were relatively free of mitochondria and lysosomes but were contaminated to some extent by elements of the endoplasmic reticulum. From these results it can be concluded that the prostaglandin F2alpha receptor is localized on the plasma membranes of the corpus luteum cells. A simple method is described for the purification of plasma membranes from bovine corpora lutea by differential centrifugation.  相似文献   

13.
The effect of prostaglandin PGF2 alpha on the hCG stimulated and basal progesterone production by human corpora lutea was examined in vitro. hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16-19 of a normal 28 day cycle), mid (days 20-22) and late (days 23-27) luteal phases. This stimulation was inhibited by PGF2 alpha (10 micrograms/ml) in corpora lutea of mid and late luteal phases. PGF2 alpha alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF2 alpha at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

14.
The formation and fate of the corpus luteum have been described for a previously un researched species of South-east Asian colobine, the Dusky leaf monkey, Presbytis obscura. Histological material from 44 wild female monkeys collected at various stages of the menstrual cycle, pregnancy and lactation over a 12-month period was available for study. The corpus luteum of the menstrual cycle was a cystic structure and consisted of a thin rim of luteal tissue surrounding a central cavity filled with a meshwork of fibrin. At the end of the luteal phase the corpus luteum either degenerated into a corpus albicans, or became transformed into a corpus aberrans. Corpora aberrantia have previously only been described in the ovaries of the rhesus monkey, where they may persist for many months. Ultimately the corpus aberrans may also degenerate into a corpus albicans. Small corpora lutea atretica were observed during early pregnancy but there was no evidence of corpora lutea accessoria. Anovulatory cycles were common amongst the females included in this study and may play a role in limiting the growth of troops in their natural environment. Comparisons have been drawn between the findings presented here and those published for other species of catarrhine primate.  相似文献   

15.
The hormonal activity of corpora lutea isolated from pregnant rat was examined on 1, 2, 3, 4, 5, 6, 15, and 20th day of pregnancy. The cells were grown as a monolayers up to 6 days at 37 degrees C in Medium 199 supplemented with 10% calf serum. The concentrations of progesterone and estrogens were measured using appropriate radioimmunoassays [1, 7] respectively. Luteal cells were cultured with the addition of the following amounts of hormones: 100 ng LH, 10 i.u. HCG, 100 ng PRL and 150 ng estradiol 17 beta. Cytochemical and histochemical observation of the activity of delta 5, 3 beta-hydroxysteroid dehydrogenase (delta 5, 3 beta-HSD) were also carried out. The addition of LH and HCG to culture medium of cells collected on day 1 and 2 of pregnancy caused increased histochemical reaction for delta 5, 3 beta-HSD and progesterone secretion. It was only on day 3 of pregnancy that the influence of PRL was observed. On day 4 corpus luteum cells began to respond to exogenous estradiol. On day 5 the sensitivity of corpus luteum to exogenous hormones disappeared but the intensive hormonal activity of the corpus luteum marked by the high level of progesterone, was maintained.  相似文献   

16.
Epinephrine can mimic the stimulatory effects of LH in vitro on cyclic AMP (cAMP) and progesterone production by isolated rat corpora lutea. The aim of the present study was to test whether the effects of epinephrine in vitro on the rat corpus luteum, as with LH, can be inhibited by prostaglandin F2 alpha (PGF2 alpha). The stimulatory effect of epinephrine on tissue levels of cAMP in 1-day-old corpora lutea was not inhibited by PGF2 alpha. A dose-dependent inhibition by PGF2 alpha (0.5-50 microM) was seen for 3-day-old corpora lutea and this inhibition could not be overcome by higher concentrations of epinephrine (0.165-165 microM). The stimulation by epinephrine on progesterone production was inhibited by PGF2 alpha (5 microM) in 3- and 5-day-old, but not in 1-day-old corpora lutea. Thus, PGF2 alpha can inhibit the stimulatory effect of epinephrine in 3- and 5-day-old corpora lutea, but not in the newly formed corpora lutea (1-day-old) and PGF2 alpha shows in this respect the same age dependent inhibitory pattern as in relation to LH stimulation.  相似文献   

17.
This study characterizes the expression of monocyte chemoattractant protein-1 (MCP-1) and the relative distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Immunodetectable MCP-1 was evident in corpora lutea of cows at Days 6, 12, and 18 postovulation (Day 0 = ovulation, n = 4 cows/stage). Day 6 corpora lutea contained minimal MCP-1 that was confined primarily to blood vessels. In contrast, relatively intense staining for MCP-1 was observed in corpora lutea from Days 12 and 18 postovulation. MCP-1 was again most evident in the cells of the vasculature, but it was also observed surrounding individual luteal cells, particularly by Day 18. An increase in immunohistochemical expression of MCP-1 on Days 12 and 18 postovulation corresponded with increases in MCP-1 mRNA and protein in corpora lutea as determined by Northern blot analysis and ELISA. Monocytes and macrophages were the most abundant immune cells detected in the bovine corpus luteum, followed by CD8+ and CD4+ T lymphocytes. In all instances, Day 6 corpora lutea contained fewer immune cells than corpora lutea from Days 12 and 18. In conclusion, increased expression of MCP-1 was accompanied by the accumulation of immune cells in the corpora lutea of cows during the latter half of the estrous cycle (Days 12-18 postovulation). These results support the hypothesis that MCP-1 promotes immune cell recruitment into the corpus luteum to facilitate luteal regression. These results also raise a provocative issue, however, concerning the recruitment of immune cells several days in advance of the onset of luteal regression.  相似文献   

18.
Bilaterally ovariectomized ewes were used to investigate the effect of systemic administration (i.v.) of charcoal-treated aqueous luteal extracts from ovine corpora lutea on plasma concentrations of pituitary gonadotrophins. Jugular blood samples were taken every 15 min at least 5 h before (control period) and 5 h after (treatment period) injection. In Expt 1, the administration of luteal extract from corpora lutea of days 70-76 of pregnancy, but not of the extract prepared from muscular tissue, resulted in a significant decrease of mean concentrations of luteinizing hormone (LH) (P < 0.02) and frequency of LH pulses (P < 0.01). Plasma follicle-stimulating hormone (FSH) concentrations were not affected by injections of either extract. These findings provide the first demonstration of the presence of a nonsteroidal factor in the corpus luteum of midpregnancy that selectively suppresses the secretion of LH. In Expt 2, mean concentrations of LH and FSH and frequency of LH pulses were unaffected by injections of luteal extracts from ovine corpora lutea of days 10-12 of the oestrous cycle or day 15 of pregnancy. These data suggest that some factor(s), probably from the fetoplacental endocrine unit, is required to ensure the production of a significant quantity of the luteal LH-inhibiting factor after day 15 of pregnancy. In Expt 3, treatment of luteal extract from corpora lutea of day 70 of pregnancy with proteolytic enzymes destroyed the LH-inhibiting activity, suggesting the proteic nature of the luteal LH-inhibiting factor. In Expt 4, plasma concentrations of LH were not affected by injection of charcoal-treated extract prepared from fetal cotyledonary tissue of days 110-120 of pregnancy suggesting that the LH-inhibiting factor exclusively originates from the corpus luteum during pregnancy. These experiments provide the first direct evidence for the existence of a potent nonsteroidal factor of luteal origin that specifically inhibits pulsatile secretion of LH, without influencing FSH release in female animals. We propose the term LH-release-inhibiting factor (LH-RIF) to describe this activity.  相似文献   

19.
Aqueous extracts of frozen human corpora lutea were tested for the presence of an inhibitor of luteinizing hormone-receptor site binding (LHRBI) and for the subsequent effect on the stimulatory response of luteinizing hormone (LH) on progesterone synthesis by sheep ovarian cells. In the presence of human corpus luteum extract of normal menstrual cycle (30,000-g supernatant), the binding of 125I human chorionic gonadotrophin (hCG) to granulosa and luteal cells of sheep ovaries was markedly reduced, but the ability of rat testicular LH receptors to bind labelled hCG was less affected. However, extracts of corpora lutea of the first trimester of pregnancy appeared to be less inhibitory on the binding of LH/hCG to ovarian cells and had no effect on the binding of rat testicular cells compared to those of normal menstrual cycle. Addition of both extracts separately inhibited the LH-stimulated in vitro progesterone synthesis by granulosa cell cultures and by incubated sheep corpus luteum slices. These findings provide evidence for the presence of LHRBI in human corpus luteum.  相似文献   

20.
Spontaneous reduction of advanced twin embryos has been described in high-producing, Holstein-Fresian (Bos taurus) dairy herds. The first objective of the current study was to determine whether management and cow factors could have an effect on such a reduction in twin pregnancies during the early fetal period. Because loss of a corpus luteum was noted in cows suffering twin reduction, we expanded our study to include multiple-ovulating cows carrying singletons. Pregnancy was diagnosed and confirmed from Days 28 to 34 and 56 to 62 postinsemination. Sixty-nine (23.5%) of 293 pregnant cows with two corpora lutea carrying singletons and 132 (28.4%) of 464 twin pregnancies recorded on first pregnancy diagnosis subsequently lost one of the corpora lutea or one of the embryos, respectively. Thirty-four (25.8%) of the 132 twin pregnancies suffering embryo reduction lost one corpus luteum along with the embryo. Corpus luteum reduction always occurred in the ovary ipsilateral to the gravid horn suffering embryo reduction. Binary logistic regressions were performed considering corpus luteum and embryo reduction as dependent variables in single and twin pregnancies, respectively, and several management- and cow-related factors as independent variables. In cows carrying singletons, the risk of corpus luteum reduction was 14.3 (1/0.07) times lower for a given herd, whereas the interaction season by laterality significantly affected corpus luteum reduction such that in cows with two corpora lutea ipsilateral to the horn of pregnancy, the risk of reduction decreased during the winter period. In cows carrying twins, ipsilateral twin pregnancies were 3.45 (1/0.29) times more likely to undergo the loss of one embryo than bilateral twin pregnancies. As an overall conclusion, both corpora lutea and embryos were vulnerable to the effects of stress factors during the early fetal period in cows maintaining their pregnancies. A strong unilateral relationship between the corpus luteum and the conceptus was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号