首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of esters of bilirubin   总被引:2,自引:2,他引:0  
1-Alkyl-3-p-tolytriazenes were used to synthesize the methyl, ethyl, isopropyl and benzyl esters of bilirubin. Treatment of a chloroform solution of bilirubin with the triazene at room temperature gave high yields of the corresponding esters. These were identified by n.m.r. and mass spectroscopy together with elemental analysis. N.m.r. studies also suggest that bilirubin dimethyl ester is in the lactam rather than the lactim form.  相似文献   

2.
A new solid-phase synthetic methodology was developed that enables libraries of peptide-based Tc(I)/Re(I) radiopharmaceuticals to be prepared using a conventional automated peptide synthesizer. Through the use of a tridentate ligand derived from N-alpha-Fmoc-l-lysine, which we refer to as a single amino acid chelate (SAAC), a series of 12 novel bioconjugates [R-NH(CO)ZLF(SAAC)G, R = ethyl, isopropyl, n-propyl, tert-butyl, n-butyl, benzyl; Z = Met, Nle] that are designed to target the formyl peptide receptor (FPR) were prepared. Construction of the library was carried out in a multiwell format on an Advanced ChemTech 348 peptide synthesizer where multi-milligram quantities of each peptide were isolated in high purity without HPLC purification. After characterization, the library components were screened for their affinity for the FPR receptor using flow cytometry where the K(d) values were found to be in the low micromolar range (0.5-3.0 microM). Compound 5j was subsequently labeled with (99m)Tc(I) and the product isolated in high radiochemical yield using a simple Sep-Pak purification procedure. The retention time of the labeled compound matched that of the fully characterized Re-analogue which was prepared through the use of the same solid-phase synthesis methodology that was used to construct the library. The work reported here is a rare example of a method by which libraries of peptide-ligand conjugates and their rhenium complexes can be prepared.  相似文献   

3.
This paper describes the single channel properties of a series of synthetic analogues of gramicidin A, where all four tryptophans are replaced either by tyrosine or by several O-protected (benzyl, methyl, ethyl or t-butyl) derivatives. It is shown that, although all analogues bear similar dipole moment on their side-chains, the conductance depends on the hydrophobicity of these protecting groups. An analysis of the conductance data suggests that the conductance is governed by the binding process and a possible explanation, based on conformational considerations, is proposed.Abbreviations GA X=tryptophane - GM X=phenylalanine - GN X=naphthylalanine - GQ8 X=8-quinolylalanine - GQ4 X=4-quinolylalanine - GT X=tyrosine - GTBzl X=O-benzyltyrosine - GTMe X=O-methyltyrosine - GTEt X=O-ethyltyrosine - GTBu X=O-t-butyltyrosine  相似文献   

4.
We explored the unique substrate specificity of the primary S(1) subsite of human urinary kallikrein (hK1), which accepts both Phe and Arg, using internally quenched fluorescent peptides Abz-F-X-S-R-Q-EDDnp and Abz-G-F-S-P-F-X-S-S-R-P-Q-EDDnp [Abz is o-aminobenzoic acid; EDDnp is N-(2,4-dinitrophenyl)ethylenediamine], which were based on the human kininogen sequence at the C-terminal region of bradykinin. Position X, which in natural sequence stands for Arg, received the following synthetic basic non-natural amino acids: 4-(aminomethyl)phenylalanine (Amf), 4-guanidine phenylalanine (Gnf), 4-(aminomethyl)-N-isopropylphenylalanine (Iaf), N(im)-(dimethyl)histidine [H(2Me)], 3-pyridylalanine (Pya), 4-piperidinylalanine (Ppa), 4-(aminomethyl)cyclohexylalanine (Ama), and 4-(aminocyclohexyl)alanine (Aca). Only Abz-F-Amf-S-R-Q-EDDnp and Abz-F-H(2Me)]-S-R-Q-EDDnp were efficiently hydrolyzed, and all others were resistant to hydrolysis. However, Abz-F-Ama-S-R-Q-EDDnp inhibited hK1 with a K(i) of 50 nM with high specificity compared to human plasma kallikrein, thrombin, plasmin, and trypsin. The Abz-G-F-S-P-F-X-S-S-R-P-Q-EDDnp series were more susceptible to hK1, although the peptides with Gnf, Pya, and Ama were resistant to it. Unexpectedly, the peptides in which X is His, Lys, H(2Me), Amf, Iaf, Ppa, and Aca were cleaved at amino or at carboxyl sites of these amino acids, indicating that the S(1)' subsite has significant preference for basic residues. Human plasma kallikrein did not hydrolyze any peptide of this series except the natural sequence where X is Arg. In conclusion, the S(1) subsite of hK1 accepts amino acids with combined basic and aromatic side chain, although for the S(1)-P(1) interaction the preference is for aliphatic and basic side chains.  相似文献   

5.
N M Mozier  J L Hoffman 《FASEB journal》1990,4(15):3329-3333
Thioether methyltransferase was previously shown to catalyze the S-adenosylmethionine-dependent methylation of dimethyl selenide, dimethyl telluride, and various thioethers to produce the corresponding methyl onium ions. In this paper we show that the following thioethers are also substrates for this enzyme in vitro: 2-hydroxyethyl ethyl sulfide, 2-chloroethyl ethyl sulfide, thiodiglycol, t-butyl sulfide, and isopropyl sulfide. To demonstrate thioether methylation in vivo, mice were injected with [methyl-3H]methionine plus different thioethers, and extracts of lungs, livers, kidneys, and urine were analyzed by high-performance liquid chromatography for the presence of [3H]methyl sulfonium ions. The following thioethers were tested, and all were found to be methylated in vivo: dimethyl sulfide, diethyl sulfide, methyl n-propyl sulfide, tetrahydrothiophene, 2-(methylthio)ethylamine, 2-hydroxyethyl ethyl sulfide, and 2-chloroethyl ethyl sulfide. This supports our hypothesis that the physiological role of thioether methyltransferase is to methylate seleno-, telluro-, and thioethers to more water-soluble onium ions suitable for urinary excretion. Conversion of the mustard gas analog, 2-chloroethyl ethyl sulfide, to the methyl sulfonium derivative represents a newly discovered mechanism for biochemical detoxification of sulfur mustards, as this conversion blocks formation of the reactive episulfonium ion that is the ultimate alkylating agent for this class of compounds.  相似文献   

6.
S Butenas  T Orfeo  J H Lawson  K G Mann 《Biochemistry》1992,31(23):5399-5411
A series of new compounds, 6-amino-1-naphthalenesulfonamides (ANSN), were used as fluorescent detecting groups for substrates of amidases. These compounds have a high quantum fluorescent yield, and the sulfonyl moiety permits a large range of chemical modification. Fifteen ANSN substrates with the structure (N alpha-Z)Arg-ANSNR1R2 were synthesized and evaluated for their reactivity with 8 proteases involved in blood coagulation and fibrinolysis. Thrombin, activated protein C, and urokinase rapidly hydrolyzed substrates with monosubstituted sulfonamide moieties (R1 = H). The maximum rate of substrate homologue). The hydrolysis rates for substrates with branched substituents were slower than their linear analogues. Monosubstituted (N alpha-Z)Arg-ANSNR1R2 possessing cyclohexyl or benzyl groups in the sulfonamide moiety were hydrolyzed by these three enzymes at rates similar to that of the n-butyl homologue (except the cyclohexyl compound for u-PA). Factor Xa rapidly hydrolyzed substrates with short alkyl chains, especially when R1 = R2 = CH3 or C2H5. Lys-plasmin and rt-PA demonstrated low activity with these compounds, and the best results were accomplished for monosubstituted compounds when R2 = benzyl (for both enzymes). Factor VIIa and factor IXa beta exhibited no activity with these substrates. A series of 14 peptidyl ANSN substrates were synthesized, and their reactivity for the same 8 enzymes was evaluated. Thrombin, factor Xa, APC, and Lys-plasmin hydrolyzed all of the substrates investigated. Urokinase, rt-PA, and factor IXa beta exhibited reactivity with a more limited group of substrates, and factor VIIa hydrolyzed only one compound (MesD-LGR-ANSN(C2H5)2). The substrate ZGGRR-ANSNH (cyclo-C6H11) showed considerable specificity for APC in comparison with other enzymes (kcat/KM = 19,300 M-1 s-1 for APC, 1560 for factor IIa, and 180 for factor Xa). This kinetic advantage in substrate hydrolysis was utilized to evaluate the activation of protein C by thrombin in a continuous assay format. Substrate (D-LPR-ANSNHC3H7) was used to evaluate factor IX activation by the factor VIIa/tissue factor enzymatic complex in a discontinuous assay. A comparison between the commercially available substrate chromozyme TH (p-nitroanilide) and the ANSN substrate with the same peptide sequence (TosGPR) demonstrated that aminonaphthalenesulfonamide increased the specificity (kcat/KM) of substrate hydrolysis by thrombin more than 30 times, with respect to factor Xa substrate hydrolysis.  相似文献   

7.
The cis axial/equatorial OH groups of methyl alpha-L- and ethyl 1-thio-alpha-L-rhamnopyranoside, 1,6-anhydro-beta-D-mannopyranose, and 1,6-anhydro-beta-D-galactopyranose were reacted with 2-naphthaldehyde dimethyl acetal to diastereomeric dioxolane-type 2,3-O-(2-naphthyl)methylene or 3,4-O-(2-naphthyl)methylene acetals. The glycosides yielded the exo- and endo-isomers in nearly 1:1 ratio, 1,6-anhydro-beta-D-mannopyranose gave predominantly the endo-, and 1,6-anhydro-beta-D-galactopyranose exclusively endo-isomer. The acetals and some of their fully protected derivatives bearing benzyl or tert-butyldimethylsilyl groups were hydrogenolised with AlH(3) (3LiAlH(4)-AlCl(3)) or with Me(3)N.BH(3)-AlCl(3) reagents. The endo-isomers were cleaved by both reagents to give axial NAP ethers, the exo-isomers of pyranosides furnished equatorial NAP ethers. However, the exo-isomers of pyranoses gave irregular axial ethers with a > 30-fold enhancement of the reaction rates with respect to the endo-isomer.  相似文献   

8.
Liu Y  Wang F  Tan T 《Chirality》2009,21(3):349-353
Extracellular lipase LIP prepared in our lab from the yeast Yarrowia lipolytica was used for the resolution of racemic ibuprofen. The (S)-enantiomer was preferred by lipase LIP, and the unreacted (R)-enantiomer was extracted and racemized in basic solvent-water medium to be re-resolved. Solvent, content of solvent, base concentration, and temperature have a strong effect on racemization. The (S)-ester was separated and hydrolyzed to (S)-ibuprofen in acidic dimethyl sulfoxide-water mixture containing 70% dimethyl sulfoxide. The high purity (S)-ibuprofen (ee = 0.98) was obtained using lipase LIP to catalyze hydrolysis of (S)-ester in 0.1 M phosphate buffer (pH = 8).  相似文献   

9.
Three different bacterial stains were prepared using ethyl, isopropyl and methyl alcohols as solvents for the dry stain. The stains thus prepared were tried against various organisms and their staining qualities noted. Stains prepared with methyl alcohol were comparable, in ease of preparation and staining quality, with those prepared using ethyl alcohol. It was concluded that stains prepared with methyl alcohol, instead of ethyl, would be entirely satisfactory for routine procedures. This confirms the findings of Conn and Darrow.  相似文献   

10.
N-Substituted derivatives of 4-piperidinyl benzilate were synthesized and their affinities for central muscarinic cholinergic receptors determined using an in vitro radioligand binding assay. 4-Piperidinyl benzilate exhibited a Ki value of 2.0 nM. N-Substitution with a methyl or an ethyl group increased the affinity to 0.2 nM, whereas substitution with a n-propyl or isopropyl group decreased the binding affinity over 100 fold. Compounds with aralkyl substitutions at the nitrogen atom of piperidinyl benzilate were also synthesized and evaluated. The Ki values (nM) obtained for these compounds were: benzyl, 0.2; p-nitrobenzyl, 13.0; p-fluorobenzyl, 3.0; phenethyl, 8.0; p-nitrophenethyl, 15.0. These data suggest that a binding region near the piperidinyl nitrogen may tolerate bulky aromatic substitutions (e.g., benzyl or phenethyl) as well or better than straight chain or branched alkyl substitutions (e.g., n-propyl or isopropyl).  相似文献   

11.
The initial rates of hydrolysis of Bz-Gly-Lys and Bz-Gly-Phe by carboxypeptidase B (CPB) are increased in the presence of the modifiers beta-phenylpropionic acid, cyclohexanol, Bz-Gly, and Bz-Gly-Gly. The hydrolysis of the tripeptide Bz-Gly-Gly-Phe is also activated by Bz-Gly and Bz-Gly-Gly, but none of these modifiers activate the hydrolysis of Bz-Gly-Gly-Lys, Z-Leu-Ala-Phe, or Bz-Gly-phenyllactic acid by CPB. All modifiers except cyclohexanol display inhibitory modes of binding when present in high concentration. Examination of Lineweaver-Burk plots in the presence of fixed concentrations of Bz-Gly has shown that activation of the hydrolysis of neutral and basic peptides by CPB, as reflected in the values of the extrapolated parameters, Km(app) and kcat, occurs by different mechanisms. For Bz-Gly-Gly-Phe, activation occurs because the enzyme-modifier complex has a higher affinity than the free enzyme for the substrate, whereas activation of the hydrolysis of Bz-Gly-Lys derives from an increase in the rate of breakdown of the enzyme-substrate complex to give products. Cyclohexanol differs from Bz-Gly and Bz-Gly-Gly in that it displays no inhibitory mode of binding with any of the substrates examined, activates only the hydrolysis of dipeptides by CPB, and has a greater effect on the hydrolysis of the basic dipeptide than on the neurtal dipeptide. Moreover, when Bz-Gly-Lys is the substrate, cyclohexanol activates its hydrolysis by CPB by increasing both the enzyme-substrate binding affinity and the rate of the catalytic step, an effect different from that observed when Bz-Gly is the modifier. The anomalous kinetic behavior of CPB is remarkably similar to that of carboxypeptidase A, and is a good indication that both enzymes have very similar structures in and around their respective active sites. A binding site for activator molecules down the cleft of the active site is proposed for CPB to explain the observed kinetic behavior.  相似文献   

12.
Simple synthetic compounds of lauroyl-arginine ethyl ester (LAE) and 9-fluorenylmethoxycarbonyl-L-agrinine methyl ester (Fmoc-Arg-OMe) were studied for their inhibitory effect on the hydrolysis of chromogenic substrate Tos-Gly-Pro-Arg-pNA (Chromozym TH) by thrombin with K(i) for LAE 1.92 microM and 77 microM for Fmoc Arg-OMe. It was shown that LAE inhibits thrombin activity almost 20 times more strongly than trypsin (K(i) = 18.9 microM). At the same time LAE preserves the ability to be hydrolyzed by thrombin at pH 8.5 (k(cat) = 3.6 c(-1)) and trypsin (k(cat) = 56 c(-1)). It is suggested, that LAE ability to suppress growth of some microorganisms is conditioned to some extent by its ability to inhibit the activity of trypsin-like serine proteases, participating in the infection process.  相似文献   

13.
Esters of 2-hydroxy-4-methoxy-6-n-pentylbenzoic acid (2-8) (methyl, ethyl, butyl, pentyl, isopropyl, sec-butyl and benzyl), olivetol (9), methyl, ethyl, butyl perlatolates (10-12), 2,4-dihydroxy-6-n-pentylbenzoic acid (15), and methyl and ethyl esters of (15) were prepared through structural modifications of perlatolic acid (1) with the aim to detect new antifungal and antibacterial substances and also to evaluate the toxicity by the brine shrimp lethality assay against Artemia salina. The antifungal assays were carried out against the fungus Cladosporium sphaerospermum through the bioautography method, and methyl 2,4-dihydroxy-6-n-pentylbenzoate (13) showed the highest antifungal activity (2.5 yg). Olivetol (9) and 2,4-dihydroxy-6-n-pentylbenzoic acid (15) are also potent inhibitors of the growth of the fungus (5.0 microg). Except for methyl (10), the ethyl (11) and butyl (12) perlatolates were less active than perlatolic acid (1). The activities presented by methyl (2) and ethyl (3) 2-hydroxy-4-methoxy-6-n-pentylbenzoates and methyl (13) and ethyl (14) 2,4-dihydroxy-6-n-pentylbenzo-ates suggest that compounds with a free hydroxy group in the aromatic ring (C-4) have a more pronounced effect against C. sphaerospermum. Antibacterial activities were tested by the disc diffusion method using pathogenic strains of S. aureus and E. coli. The compounds were weakly active with inhibition zones between 9-15 mm. The 2-hydroxy-4-methoxy-6-n-pentylbenzoic esters 2-8 and alkyl perlatolates 10-12 were selective against E. coli. Perlatolic acid (1) and methyl 2-hydroxy-4-methoxy-6-n-pentylbenzoate (2) were the most active with LD50 values of 24.1 microM and 27.2 microM, respectively. The other compounds were not toxic to Artemia salina larvae.  相似文献   

14.
Five chemically modified forms of cellulose were prepared, characterized, and tested as substrates for a homogeneous glucanohydrolase from A. niger. The relative order of reactivity at pH 4.0 was DEAE = PEI > benzyl DEAE > cellulose > P > CM.The following abbreviations are used throughout the article: (RBB) Remazol brilliant blue R; (DEAE) diethylamino ethyl; (PEI) polethyleneimine; (CM) carboxymenthyl; (P) phospho; (DS) degree of RBB dye substitution of cellulose, in mol dye/100 glucose. This indicates that positively charged cellulose substrates are more susceptible to hydrolysis by the cellulase. This observation strengthens an earlier proposal that caroxyl groups on the enzyme are involved in substrate binding and catalytic action. Chemical modification is suggested as a method to increase the rate of enzymatic hydrolysis of cellulose, a process now in the commercial development stage.  相似文献   

15.
Hydrolysis rates of N-acetyl dehydroalanine methyl ester (methyl 2-acetamidoacrylate) and related model compounds were measured in aqueous, organic and mixed aqueous media. Adding dimethylsulfoxide (DMSO) to water, retarded hydrolysis of the ester by a factor of 2 to 500, depending on the pH of the medium and concentration of DMSO. Ethanol also slowed hydrolysis, but the effect was not so pronounced. Related studies show that the acetamido group C-N bond of sodium 2-acetamido-acrylate is hydrolyzed only about 1/130 as fast as the ester group C-O bond. Aqueous dimethyl sulfoxide should by a useful medium for synthesis of peptide, amino acid and protein derivatives of N-acetyl dehydroalanine methyl ester.  相似文献   

16.
1. The effect of dimethyl sulfoxide (Me2SO) and ethylene glycol on two different preparations of the sarcoplasmic reticulum, i.e. native membranes and membranes whose phospholipids were hydrolyzed by phospholipase A, were investigated using ATP and p-nitrophenylphosphate as substrates. 2. Me2SO and ethylene glycol inhibit both calcium-dependent ATP hydrolysis and ATP-supported calcium transport by native vesicles. 3. In contrast, calcium-dependent p-nitrophenylphosphatase activity as well as p-nitrophenyl-phosphate-supported calcium transport are activated by both agents at concentrations lower than 30% (v/v). 4. Me2SO strongly stimulates p-nitrophenylphosphate activity of vesicles treated with phospholipase A, but has relatively little effect on p-nitrophenylphosphatase activity of native vesicles. 5. Up to a concentration of approximately 40% Me2SO (v/v) the inhibiting effect on the calcium-dependent ATPase is fully reversible, but only partially reversible on calcium transport. 6. In the concentration range where Me2SO inhibits ATP hydrolysis and calcium transport, it does not affect ATP binding to the membranes nor calcium-dependent formation of phospho-protein. 7. The rate of dephosphorylation as well as the rate of Pi exchange between ATP and ADP are markedly reduced by the presence of 30% Me2SO (v/v). 8. While Me2SO inhibits passive calcium efflux, ethylene glycol produces a considerable activation. 9. ADP-dependent calcium efflux and ATP synthesis are activated by 15% Me2SO (v/v). Ethylene glycol reduces both activities. 10. The results suggest that the respective substrate-enzyme complexes are differently affected by the agents, resulting either in inhibition or stimulation  相似文献   

17.
This work presents a three-step synthesis of a new series of 4-substituted 2-oxo-6-trihalomethyl-[1,3]oxazinane-3-carboxylic acid ethyl esters, from beta-alkoxyvinyl trihalomethyl ketones of general formula X3C-C(O)-CH=C(R)-OR(1), where R = H, Me, Ph, and 4-Me-Ph; R(1) = Me and Et; and X = F and Cl. The Michael addition-substitution of the ethyl carbamate on beta-alkoxyvinyl trihalomethyl ketones furnished the corresponding (4,4,4-trihalo-3-oxo-but-1-enyl)-carbamic acid ethyl esters. These compounds underwent reduction with NaBH4 leading to the respective (4,4,4-trihalo-3-hydroxy-butyl)-carbamic acid ethyl esters. The 3-hydroxy-butyl carbamates were submitted to cyclization reaction with triphosgene to give a series of 4-substituted 2-oxo-6-trihalomethyl-[1,3]oxazinane-3-carboxylic acid ethyl esters. The in vitro antimicrobial activity, of some of the three new series of the title compounds, was assessed against a panel of microorganisms including yeast like fungi, bacteria, and algae, and their minimal inhibitory concentration and minimal fungicidal, bactericidal, and algacidal concentrations were determined. Some of the analyzed carbamates exhibited significant in vitro antimicrobial activity.  相似文献   

18.
3,4-Dihydrocoumarin hydrolase (DCH) from Acinetobacter calcoaceticus F46, which was previously found on screening for aromatic lactone-hydrolyzing enzymes, catalyzes the hydrolysis of several linear esters. The substrate specificity of the enzyme toward linear esters was quite characteristic, i.e., (1) it was specific toward methyl esters, (2) it recognized the configuration at the 2-position, and (3) it hydrolyzed diesters to monoesters. DCH hydrolyzed the methyl esters of beta-acetylthioisobutyrate and cetraxate. The products of these reactions were identified as D-beta-acetylthioisobutyrate and cetraxate, respectively, i.e., the hydrolysis reactions catalyzed by DCH were stereo- and/or regioselective. With recombinant Escherichia coli cells expressing the DCH gene as a catalyst, stereospecific hydrolysis of methyl beta-acetylthioisobutyrate and regioselective hydrolysis of methyl cetraxate proceeded efficiently.  相似文献   

19.
We have devised a simple method for achieving 890-fold purification of ceramide glycanase with 17% recovery from a North American leech, Macrobdella decora. The method includes water extraction, ammonium sulfate fractionation, and chromatography on octyl-Sepharose, Matrex gel blue A, and Bio-Gel A-0.5m columns. The final preparation showed one major protein band at 54 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By using Bio-Gel A-0.5m filtration, the native enzyme was found to have a molecular mass of 330 kDa. With GM1 as substrate, the optimum pH of this enzyme was determined to be 5.0; the enzyme was stable between pH 4.5 and 8.5. Zn2+ at 5 mM and Cu2+, Ag+, and Hg2+ at 1 mM strongly inhibited the hydrolysis of GM1 by ceramide glycanase. The ceramide glycanase released the intact glycan chain from various glycosphingolipids in which the glycan chain is linked to the ceramide through a beta-glucosyl linkage. This enzyme also cleaved lyso-glycosphingolipids such as lyso-GM1 and lyso-LacCer and synthetic alkyl beta-lactosides. Among seven alkyl beta-lactosides tested, the enzyme only hydrolyzed the ones with an alkyl chain length of four or more carbons. The enzyme also hydrolyzed 2-(octadecylthio)ethyl O-beta-lactoside and 2-(2-carbomethoxyethylthio)ethyl O-beta-lactoside. p-Nitrophenyl, benzyl, and phytyl beta-lactosides, on the other hand, were not hydrolyzed. These results suggest that the enzyme can recognize the hydrophobic portion of glycolipid substrates. The fact that 2-(2-carbomethoxyethylthio)ethyl O-beta-N-acetyllactosaminide and DiGalCer were refractory to the enzyme indicated that in the substrate the first sugar attached to the hydrophobic chain cannot be N-acetylglucosamine and galactose. Furthermore, dodecyl maltoside, Gal alpha 1----6Glc beta Cer, and the LacCer in which the --CH2OH of the galactose was converted into --CHO were also resistant to the enzyme, and Man beta 1----4 Glc beta Cer was hydrolyzed at a much slower rate than LacCer. These results indicate that the nature and the linkage of the sugar attached to the glucose have a profound effect on the action of this enzyme. The hydrolysis of glycosphingolipids by ceramide glycanase is stimulated by bile salts. Among various bile salts tested, sodium cholate at a concentration of 1 microgram/microliter was found to be most effective in stimulating the hydrolysis of various glycosphingolipids with the exception of LacCer. For LacCer, sodium taurodeoxycholate at a concentration of 2-3 micrograms/microliters was most effective. Tween 20, Nonidet P-40, and Triton X-100 did not stimulate the hydrolysis of GM1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A purified phosphotriesterase was successfully immobilized onto trityl agarose in a fixed bed reactor. A total of up to 9200 units of enzyme activity was immobilized onto 2.0 mL of trityl agarose (65 mumol trityl groups/mL agarose), where one unit is the amount of enzyme required to catalyze the hydrolysis of one micromole of paraoxon in one min. The immobilized enzyme was shown to behave chemically and kinetically similar to the free enzyme when paraoxon was utilized as a substrate. Several organophosphate pesticides, methyl parathion, ethyl parathion, diazinon, and coumaphos were also hydrolyzed by the immobilized phosphotriesterase. However, all substrates exhibited an affinity for the trityl agarose matrix. For increased solubility and reduction in the affinity of these pesticides for the trityl agarose matrix, methanol/water mixtures were utilized. The effect of methanol was not deleterious when concentrations of less than 20% were present. However, higher concentrations resulted in elution of enzyme from the reactor. With a 10-unit reactor, a 1.0 mM paraoxon solution was hydrolyzed completely at a flow rate of 45 mL/h. Kinetic parameters were measured with a 0.1-unit reactor with paraoxon as a substrate at a flow rate of 22 mL/h. The apparent K(m) for the immobilized enzyme was 3-4 times greater than the K(m) (0.1 mM) for the soluble enzyme. Immobilization limited the maximum rate of substrate hydrolysis to 40% of the value observed for the soluble enzyme. The pH-rate profiles of the soluble and immobilized enzymes were very similar. The immobilization of phosphotriesterase onto trityl agarose provides an effective method esterase onto trityl agarose provides an effective method for hydrolyzing and thus detoxifyuing organophosphate pesticides and mammalian acetylcholinesterase inhinbitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号