首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary This paper reviews mechanisms by which the rate of synthesis of subunits of mitochondrial inner membrane protein complexes and the assembly of these subunits are co-ordinated. Current models are evaluated and critically discussed in the light of some recent evidences. The focus is on the incorporation of cytoplasmically-synthesized cytochrome c oxidase subunits in the development of a newer model, which introduces some twists into a combination of several current ideas. A mechanism which governs both organized assembly and the co-ordination of rates of polypeptide synthesis is illustrated and the principles of the model are applied to the elucidation of some odd features of certain mutants. The possibilities that mitochondrial ATPase and cytochrome c reductase may also be synthesized and assembled according to this model are discussed.  相似文献   

2.
An interaction between cytochrome a in oxidized cytochrome c oxidase (CcO) and anions has been characterized by EPR spectroscopy. Those anions that affect the EPR g = 3 signal of cytochrome a can be divided into two groups. One group consists of halides (Cl-, Br-, and I-) and induces an upfield shift of the g = 3 signal. Nitrogen-containing anions (CN-, NO2-, N3-, NO3-) are in the second group and shift the g = 3 signal downfield. The shifts in the EPR spectrum of CcO are unrelated to ligand binding to the binuclear center. The binding properties of one representative from each group, azide and chloride, were characterized in detail. The dependence of the shift on chloride concentration is consistent with a single binding site in the isolated oxidized enzyme with a Kd of approximately 3 mm. In mitochondria, the apparent Kd was found to be about four times larger than that of the isolated enzyme. The data indicate it is the chloride anion that is bound to CcO, and there is a hydrophilic size-selective access channel to this site from the cytosolic side of the mitochondrial membrane. An observed competition between azide and chloride is interpreted by azide binding to three sites: two that are apparent in the x-ray structure plus the chloride-binding site. It is suggested that either Mg2+ or Arg-438/Arg-439 is the chloride-binding site, and a mechanism for the ligand-induced shift of the g = 3 signal is proposed.  相似文献   

3.
The structures of membrane proteins are difficult to obtain by crystallography and may be altered by the detergents used in their extraction. X-ray absorption spectroscopy has been used to identify the structures of the copper atoms of the membrane-bound enzyme in mitochondria and in submitochondrial particles at respective concentrations of 100 and 200 micron of molar copper. To within the experimental error, the x-ray absorption spectra of the copper atoms of the membrane-bound and the Yonetani (Yonetani, T. (1961) J. Biol. Chem. 236, 1680-1688) purified oxidase are identical; all detectable shells of the active site indicate no alteration of structural parameters. Significant differences are found when compared to the Hartzell-Beinert (Hartzell, R. C., and Beinert, H. (1974) Biochim. Biophys. Acta 368, 318-338) preparation. Extended x-ray absorption fine structure technology is now adequate for the direct studies of membrane proteins in situ in their natural environment.  相似文献   

4.
Roman I  Figys J  Steurs G  Zizi M 《Biochemistry》2005,44(39):13192-13201
VDAC, a mitochondrial outer membrane channel, is involved in the control of aerobic metabolism and in apoptotic processes via numerous protein-protein interactions. To unveil those interactions, we screened a human liver cDNA library with the phage display methodology optimized to target VDAC reconstituted into a membrane environment. One positively selected clone yielded a sequence matching a part of the subunit I of human cytochrome c oxidase (COX), a mitochondrial inner membrane enzyme. Such putative interaction was never reported before. This interaction proved to be functional as evidenced by the effect of the human and yeast isoforms of VDAC on the oxidation of cytochrome c by the pure holoenzyme and by the effect of the COX epitope on VDAC permeability. Our results providing four independently obtained evidences of VDAC-COX interaction in vitro, would support a novel and potentially important level of mitochondrial regulation given the respective locations and functions of both proteins.  相似文献   

5.
The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O(2) reduction. Reconstitution of the detergent-solubilized enzyme in small unilamellar soybean phosphatidylcholine vesicles resulted in a lowering of the pK(a) in the pH dependence profile of the proton-uptake rate. This pK(a) change resulted in decreased proton-uptake rates in the pH range of ~6.5-9.5, which is explained in terms of lowering of the pK(a) of an internal proton donor within CytcO. At pH 7.5, the rate decreased to the same extent when vesicles were prepared from the pure zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho(1-rac-glycerol) (DOPG). In addition, a small change in the internal Cu(A)-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.  相似文献   

6.
7.
Several cytoskeletal proteins have been shown to interact in vitro with, and in some cases are regulated by, specific membrane lipids. In some cases, evidence for in situ interactions has been provided. The molecular basis for such interactions is now being unravelled. At least five structurally distinct types of lipid-binding sites in cytoskeletal proteins have been identified. However, our understanding of the physiological role of such interactions is still limited. Precise knowledge about the binding-site structures and the actual amino acid residues involved should now enable the expression of mutant proteins that specifically lack the ability to interact with lipids. The impact of these mutations on protein location and function can then be assessed.  相似文献   

8.
We have analyzed the structure of mitochondrial cytochrome c oxidase in terms of general characteristics thought to be important for describing the architecture of helix bundle membrane proteins. Many aspects of the structure are similar to what has previously been found for the photosynthetic reaction center and bacteriorhodopsin. Our results lead to a considerably more precise general picture of membrane protein architecture than has hitherto been possible to obtain.  相似文献   

9.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

10.
Tight control of mitochondrial membrane potential by cytochrome c oxidase   总被引:1,自引:0,他引:1  
In the present work we have critically examined the use of the KCN-titration technique in the study of the control of the cellular respiration by cytochrome c oxidase (COX) in the presence of the mitochondrial membrane potential (Δψ(mito)) in HepG2 cells. We clearly show that the apparent high inhibition threshold of COX in the presence of maximal Δψ(mito) is due to the KCN-induced decrease of Δψ(mito) and not to a low control of COX on the mitochondrial respiration. The tight control exerted by COX on the Δψ(mito) provides further insights for understanding the pathogenetic mechanisms associated with mitochondrial defects in human neuromuscular degenerative disorders.  相似文献   

11.
Pulsed cytochrome c oxidase   总被引:1,自引:0,他引:1  
The identification of two functionally distinct states, called pulsed and resting, has led to a number of investigations on the conformational variants of the enzyme. However, the catalytic properties of cytochrome oxidase may depend on a number of experimental conditions related to the solvent as well as to the protocol followed to determine the turnover number of the enzyme. This paper reports results which illustrate that the steady-state differences between pulsed and resting oxidase may, or may not, be detected depending on experimental conditions.  相似文献   

12.
Mapping of the cytochrome c binding site on cytochrome c oxidase   总被引:1,自引:0,他引:1  
  相似文献   

13.
The isolated complexes of ferricytochrome c with cytochrome c oxidase, cytochrome c reductase (cytochrome bc1 or complex III), and cytochrome c1 (a subunit of cytochrome c reductase) were investigated by the method of differential chemical modification (Bosshard, H.R. (1979) Methods Biochem. Anal. 25, 273-301). By this method the chemical reactivity of each of the 19 lysyl side chains of horse cytochrome c was compared in free and in complexed cytochrome c and binding sites were deduced from altered chemical reactivities of particular lysyl side chains in complexed cytochrome c. The most important findings follow. 1. The binding sites on cytochrome c for cytochrome c oxidase and cytochrome c reductase, defined in terms of the involvement of particular lysyl residues, are indistinguishable. The two oxidation-reduction partners of cytochrome c interact at the front (exposed heme edge) and top left part of the molecule, shielding mainly lysyl residues 8, 13, 72 + 73, 86, and 87. The chemical reactivity of lysyl residues 22, 39, 53, 55, 60, 99, and 100 is unaffected by complex formation while the remaining lysyl residues in positions 5, 7, 25, 27, 79, and 88 are somewhat less reactive in the complexed molecule. 2. When bound to cytochrome c reductase or to the isolated cytochrome c1 subunit of the reductase the same lysyl side chains of cytochrome c are shielded. This indicates that cytochrome c binds to the c1 subunit of the reductase during the electron transfer process.  相似文献   

14.
  • 1.1. The pyridoxal phosphate (PLP) modification of the lysine amino groups in cytochrome c causes decrease in the reaction rate with cytochrome c oxidase.
  • 2.2. The rate constants for (PLP);-cyt. c, PLP(Lys 86)-cyt. c, PLP(Lys 79)-cyt. c and native cytochrome c (at pH 7.4, 1=0.02) are 3.6 × 10−3'sec-', 5.5 × 10−3, 5.2 × 10−3-'sec−1 and 9.8 × 10−3sec−1, respectively.
  • 3.3. In spite of the same positive charge of singly PLP-cytochromes c the reaction between PLP(Lys 86)-cyt. c and cyt. c oxidase exhibits the ionic strength dependence that differs from those of the PLP(Lys 79)-cyt. c.
  • 4.4. The rate constants at zero and infinite ionic strength for PLP(Lys 86)-cyt. c is 2-fold less than that for PLP(Lys 79)-cyt. c.
  • 5.5. The positively charged cytochrome c lysines 86 and 79 form two from four or five predicted complementary charge interactions with carboxyl groups on cytochrome c oxidase.
  相似文献   

15.
Cytochrome c oxidase contains two established proton-conducting structures, the D- and K-pathways. The role of the K-pathway appears to be to conduct the first two protons to be used in water formation, which are taken up on reduction of the oxidized enzyme. Previous computational work has suggested that Lys(I)-319 is neutral over a large pH range and in various redox states. We have constructed oxidase models in different redox states using quantum-chemically derived charge parameters for the redox metal centers. The protonation behaviour of titratable sites in the two-subunit enzyme was defined by continuum electrostatics. The calculations reported here show substantial protonation of Lys(I)-319 at neutral pH once the stable X-ray crystallographic water molecule found immediately next to it is treated explicitly. The immediate structure of the Lys(I)-319 environment is independent of redox state, but the pK(a) value of this residue changes with the redox state of the binuclear heme a3/Cu(B) site whenever that change is electrically uncompensated. Lys(I)-319 is also found to interact electrostatically with the conserved residue Glu(II)-62 in subunit II. These results are discussed in relation to the role of the K-pathway in oxidase function.  相似文献   

16.
Proteoliposomes incorporating cytochrome c oxidase have been prepared by the cholate dialysis method and by sonication. Sonication produces multilamellar vesicles heterogeneous in size in contrast to a more uniform preparation of unilamellar vesicles produced by the dialysis procedure. Respiratory control in both preparations ranges between 4 and 8. From an electron microscopic analysis of proteoliposome size, the average electrical capacitance/vesicle for the dialyzed and sonicated preparations is calculated as 15 X 10(-18) F and 130 X 10(-18) F, respectively. These capacitance values would lead to a quantization of membrane potential generation by the enzyme at 77 mV/turnover for the dialyzed preparation and 9 mV/turnover for sonicated vesicles. It is argued that these differences can explain the dependence of H+ translocation on the number of turnovers of cytochrome c oxidase in dialyzed preparations in contrast to the lack of dependence on number of turnovers in sonicated preparations.  相似文献   

17.
Second derivative absorption spectroscopy has been used to assess the effects of complex formation between cytochrome c and cytochrome c oxidase on the conformation of the cytochrome a cofactor. When ferrocytochrome c is complexed to the cyanide-inhibited reduced or mixed valence enzyme, the conformation of ferrocytochrome a is affected. The second derivative spectrum of these enzyme forms displays two electronic transitions at 443 and 451 nm before complex formation, but only the 443-nm transition after cytochrome c is bound. This effect is not induced by poly-L-lysine, a homopolypeptide which is known to bind to the cytochrome c binding domain of cytochrome c oxidase. The effect is limited to cyanide-inhibited forms of the enzyme; no effect was observed for the fully reduced unliganded or fully reduced carbon monoxide-inhibited enzyme. The spectral signatures of these changes and the fact that they are exclusively associated with the cyanide-inhibited enzyme are both reminiscent of the effects of low pH on the conformation of cytochrome a (Ishibe, N., Lynch, S., and Copeland, R. A. (1991) J. Biol. Chem. 266, 23916-23920). These results are discussed in terms of possible mechanisms of communication between the cytochrome c binding site, cytochrome a, and the oxygen binding site within the cytochrome c oxidase molecule.  相似文献   

18.
The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50μs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50μs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".  相似文献   

19.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号