首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that migrating palmate newts (Lissotriton helveticus) can rely on acoustic cues for orientation to breeding ponds. Nonetheless, although acoustic cues are reliable over relatively short distances, they are unlikely to account for the long‐distance homing demonstrated in several other species of newts. Most individuals of L. helveticus migrate only a few hundred meters (Diego‐Rasilla, F. J. & Luengo, R. M. 2007: Acoustic orientation in the palmate newt, Lissotriton helveticus. Behav. Ecol. Sociobiol. 61, 1329—1335), raising the possibility that this species may only utilize short‐distance cues (Joly, P. & Miaud, C. 1993: How does a newt find its pond? The role of chemical cues in migrating newts (Triturus alpestris). Ethol. Ecol. Evol. 5, 447—455; Russell, A. P., Bauer, A. M. & Johnson, M. K. 2005: Migration of amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Migration of Organisms (Elewa, M. T., ed). Springer‐Verlag, Berlin Heidelberg, pp. 151—203; Sinsch, U. 2006: Orientation and navigation in Amphibia. Mar. Freshw. Behav. Phy. 39, 65—71). Therefore, experiments were carried out to investigate the use of the geomagnetic field in the nocturnal homing orientation of L. helveticus. Tests were carried out at night in an outdoor circular arena, under total overcast sky that prevented access to celestial compass cues. Individual newts were tested in one of four symmetrical alignments of an earth‐strength magnetic field. We studied the orientation behaviour of newts from two breeding ponds located 9.05 km west‐southwest and 19 km east‐northeast of the testing site. The distribution of magnetic bearings from both groups of newts exhibited significant orientation in the homeward direction. These findings indicate that palmate newts are capable of long‐distance homing and are able to orient in the homeward direction at night using the magnetic compass as the sole source of directional (i.e., compass) information.  相似文献   

2.
The Earth's magnetic field and celestial cues provide animals with compass information during migration. Inherited magnetic compass courses are selected based on the angle of inclination, making it difficult to orient in the near vertical fields found at high geomagnetic latitudes. Orientation cage experiments were performed at different sites in high Arctic Canada with adult and young white-crowned sparrows (Zonotrichia leucophrys gambelii) in order to investigate birds' ability to use the Earth's magnetic field and celestial cues for orientation in naturally very steep magnetic fields at and close to the magnetic North Pole. Experiments were performed during the natural period of migration at night in the local geomagnetic field under natural clear skies and under simulated total overcast conditions. The experimental birds failed to select a meaningful magnetic compass course under overcast conditions at the magnetic North Pole, but could do so in geomagnetic fields deviating less than 3 degrees from the vertical. Migratory orientation was successful at all sites when celestial cues were available.  相似文献   

3.
To assess the role of skylight polarization in the orientation system of a day-migrating bird, Yellow-faced Honeyeaters (Lichenostomus chrysops, Meliphagidae) were tested in funnel cages for their directional preferences. In control tests in the natural local geomagnetic field under the clear natural sky, they preferred their normal migratory course. Manipulations of the e-vector by depolarizing the skylight or rotating the axis of polarization failed to affect the orientation as long as the natural geomagnetic field was present. When deprived of magnetic information, the birds continued in their normal migratory direction as long as they had access to information from the natural sky, or when either the sun or polarized light was available. However, when sun was hidden by clouds, depolarizers caused disorientation. — These findings indicate that polarized skylight can be used for orientation when no other known cues are available. However in the hierarchy of cues of this species, the polarization pattern clearly ranks lower than information from the geomagnetic field.  相似文献   

4.
The migratory direction in young passerine migrants is based on innate information, with the geomagnetic field and celestial rotation as references. To test whether the direction of celestial rotation is of importance, hand-raised pied flycatchers in Latvia were exposed during the premigratory period to a planetarium rotating in different directions. During autumn migration, when their orientation behavior was recorded in the local geomagnetic field in the absence of celestial cues, birds that had been exposed to a sky rotating in the natural direction showed a unimodal preference of their south-westerly migratory direction. Birds that had been exposed to a sky rotating in the reversed direction, in contrast, showed a bimodal preference of an axis south-west-north-east. Their behavior was similar to that of pied flycatchers that had been raised without access to celestial cues. In Latvia, the magnetic field alone allows only orientation along the migratory axis, and celestial rotation enables birds to select the correct end of this axis. Our findings show that the direction of rotation is of crucial importance: celestial rotation is effective only if the stars move in the natural direction.  相似文献   

5.
Two ‘cue-conflict’ experiments were designed to evaluate the role of (1) solar cues at sunset and stars, and (2) solar cues at sunset and geomagnetic stimuli, in the migratory orientation of the savannah sparrow (Passerculus sandwichensis). A sunset and stars experiment exposed birds in the experimental group to a mirror-reflected sunset followed by an unmanipulated view of stars. Experimental birds shifted their migratory activity in accordance with the setting sun despite exposure to a normal night sky. The sunset and geomagnetism experiment exposed birds in the experimental group to a simultaneous shift in both the position of sunset and the earth's magnetic field. Again experimentals shifted their activity in accordance with the setting sun rather than the artificially shifted magnetic field. Savannah sparrows probaly use stars as celestial landmarks to maintain a preferred direction and do not reorient their activity when exposed to an alternative cue once a direction is established. Moreover, savannah sparrows with experience of migration do not require geomagnetic information in order to use the solar cues available at sunset to select a migratory direction.  相似文献   

6.
The marine nudibranch mollusc Tritonia diotnedea orients to the geomagnetic field in the laboratory, and has identifiable brain cells (Pd5, 6) which respond electrically when the ambient magnetic field is rotated artificially. Field studies reported here seek to determine if and why Tritonia diomedea uses geomagnetic cues to orient in the field. Animals were collected in their natural habitat using SCUBA, and placed on lines with magnetic headings parallel to the shore, at different locations with respect to their site of origin. Observations made at two or more tidal cycles later indicate that most animals move from the line in a direction corresponding to the original shoreward direction, regardless of the actual shoreward direction at the site of release, suggesting guidance by geomagnetic cues. Tritonia diomedea are close to neutrally buoyant, and subject to transport over great distances when dislodged by tidal currents or during escape swimming behavior. Since the natural distribution of food and mates is along the shoreline, shoreward orientation using geomagnetic cues, particularly when other cues are weak or ambiguous, may have adaptive value.  相似文献   

7.
Summary Early studies of dance communication inApis florea had shown that waggle dances are not performed on a vertical plane and oriented to gravity, as in the other species ofApis, but instead take place on the flattened top of the exposed comb and are oriented to celestial cues directly. More recent experiments showed thatA. florea can dance in the absence of a view of the sun or blue sky, but did not establish what mechanism permitted this orientation. I now report that dances can be oriented directly to landmarks visible from the nest, the first evidence of an environmental feature other than celestial cues or gravity being involved in dance orientation. Landmarks near the nest are probably used to refer to celestial cues, in a fashion analogous to the use of broad features of the landscape by honeybees in order to learn the sun's course, which permits them to determine their flight angle on overcast days or at night, and to compensate accurately for solar movement.Apis florea may therefore be able to learn the sun's course with respect to two sets of landmarks.In other experiments I have examined the influence of slope onA. florea's dance orientation to visual references. In the first extensive observations of its dances on a vertical plane, I have amply confirmed that this species cannot transpose light and gravity in setting its dance angle, as the other species ofApis can. Nor do dancers orient so as to match visual information seen during the dance with that remembered from the flight. Patterns in the data when the same patch of sky was presented from different angles suggest instead thatA. florea continues to orient to projections of celestial cues onto the horizontal plane even when dancing on a steep slope. This compensation for slope may involve an ability to detect gravity and factor it out in aligning the dance to celestial cues.These insights suggest thatA. florea's dance orientation system has been adapted to requirements imposed by its nesting behavior, and has diverged sharply from the system shared by the other species ofApis.  相似文献   

8.
Migratory orientation of Scandinavian and Greenland wheatears was recorded during the autumn migration periods of 1988 and 1989. Orientation cage tests were conducted under clear sunset skies, to investigate the importance of different visible sky sections on orientation performance. In addition, wheatears were released under clear starry skies and under total overcast to examine the orientation of free-flying birds. The following results were obtained:
  • 1 Wheatears tested with a restricted visible sky section (90° centered around zenith) in orientation cages, showed a mean orientation towards geographic W/geomagnetic NW (Greenland) and towards geographic and magnetic WNW-NW (Sweden). These mean directions are clearly inconsistent with the expected autumn migration directions, SW-SSW in Scandinavia and SE in Greenland, as revealed by ringing recoveries for the two populations.
  • 2 When the birds were allowed a much more extensive view of the sky, almost down to the horizon (above 10° elevation), Scandinavian wheatears chose headings in agreement with ringing data. Greenland birds were not significantly oriented.
  • 3 Release experiments under clear starry skies resulted in mean vanishing directions in good agreement with ringing data from both sites. Greenland wheatears released under total overcast showed a similar orientation as under clear skies, indicating that a view of the stars may not be of crucial importance for selecting a seasonally accurate migratory direction.
The results suggest that an unobstructed view of the sky, including visual cues low over the horizon, is important, possibly in combination with geomagnetic cues, for the orientation of migratory naive wheatears. Furthermore, the birds showed remarkably similar orientation responses in Greenland and Scandinavia, respectively, indicating that they use basically the same orientation system, despite considerable differences in visual and geomagnetic orientation premises at the two different geographic and magnetic latitudes.  相似文献   

9.
The migratory orientation of juvenile white-crowned sparrows, Zonotrichia leucophrys gambelli, was investigated by orientation cage experiments in manipulated magnetic fields performed during the evening twilight period in northwestern Canada in autumn. We did the experiments under natural clear skies in three magnetic treatments: (1) in the local geomagnetic field; (2) in a deflected magnetic field (mN shifted −90°); and (3) after exposure to a deflected magnetic field (mN −90°) for 1 h before the cage experiment performed in the local geomagnetic field at dusk. Subjects showed a mean orientation towards geographical east in the local geomagnetic field, north of the expected migratory direction towards southeast. The sparrows responded consistently to the shifted magnetic field, demonstrating the use of a magnetic compass during their first autumn migration. Birds exposed to a cue conflict for 1 h on the same day before the experiment, and tested in the local geomagnetic field at sunset, showed the same northerly orientation as birds exposed to a shifted magnetic field during the experiment. This result indicates that information transfer occurred between magnetic and celestial cues. Thus, the birds' orientation shifted relative to available sunset and geomagnetic cues during the experimental hour. The mean orientation of birds exposed to deflected magnetic fields prior to and during testing was recorded up to two more times in the local geomagnetic field under natural clear and overcast skies before release, resulting in scattered mean orientations.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .  相似文献   

10.
To assess the relative importance of celestial and magnetic cues for orientation at dusk, Australian silvereyes, Zosterops l. lateralis, were subjected to artificial magnetic fields under the natural evening sky, beginning 30 min before sunset. Control birds tested in the local geomagnetic field preferred their normal south-southwesterly migratory direction. Birds tested in a magnetic field with north deflected counterclockwise to 240°WSW showed northeasterly tendencies from the first test onward. Birds subjected to a corresponding clockwise deflection to 120°ESE, in contrast, first showed southerly directions, but from the 7th test onward shifted towards the northwest. Hence, both experimental groups followed the shift in magnetic north, one immediately, the other after a delay. When the birds were later tested in a vertical magnetic field without directional information, the two experimental groups continued in the direction they had preferred in the artificial magnetic fields, presumably by celestial cues alone. This indicates that they had not simply ignored celestial cues, but had recalibrated them according to the altered magnetic fields. The reasons for the initial difference between the two experimental groups remain unclear. Delayed responses to deflections of magnetic north have also been observed in previous studies. They appear to be the main reason why studies that expose birds only once to a cue-conflict situation often seem to indicate a dominance of celestial cues, whereas studies exposing the birds repeatedly usually indicate a dominance of magnetic cues. Accepted: 17 September 1997  相似文献   

11.
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.  相似文献   

12.
Leaf‐cutter ants (Atta colombica) use trail following to travel between foraging sites and the home nest. However, this combination of pheromone and visual cues is likely to be complemented by a directional reference system such as a compass, used not only when foraging but also during colony formation, where foraging trails degrade or where ants become displaced. One candidate system is the magnetic polarity compass. We tested the orientation of leaf‐cutter ants under a magnetic field of reversed‐polarity, with the prediction that the ants would show 180° deflection compared with control ants in an unchanged geomagnetic field. When the sun's disc was unobstructed by clouds, orientation was the same as that of control ants, implying that magnetic cues were not used to orient. However, when the sky was overcast, ants in the experimental treatment significantly shifted their mean orientation both in comparison with controls and reversed‐polarity ants under the sun. Although a total reversal in orientation was not induced, the results demonstrate that Atta respond to magnetic reversal in the absence of sunlight cues, and suggest a role for magnetic cues in determining direction during orientation.  相似文献   

13.
Migratory birds use celestial and geomagnetic directional information to orient on their way between breeding and wintering areas. Cue-conflict experiments involving these two orientation cue systems have shown that directional information can be transferred from one system to the other by calibration. We designed experiments with four species of North American songbirds to: (1) examine whether these species calibrate orientation information from one system to the other; and (2) determine whether there are species-specific differences in calibration. Migratory orientation was recorded with two different techniques, cage tests and free-flight release tests, during autumn migration. Cage tests at dusk in the local geomagnetic field revealed species-specific differences: red-eyed vireo, Vireo olivaceus, and northern waterthrush, Seiurus noveboracensis, selected seasonally appropriate southerly directions whereas indigo bunting, Passerina cyanea, and grey catbird, Dumetella carolinensis, oriented towards the sunset direction. When tested in deflected magnetic fields, vireos and waterthrushes responded by shifting their orientation according to the deflection of the magnetic field, but buntings and catbirds failed to show any response to the treatment. In release tests, all four species showed that they had recalibrated their star compass on the basis of the magnetic field they had just experienced in the cage tests. Since release tests were done in the local geomagnetic field it seems clear that once the migratory direction is determined, most likely during the twilight period, the birds use their recalibrated star compass for orientation at departure. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
Jehle  Robert  Bouma  Pieter  Sztatecsny  Marc  Arntzen  J.W. 《Hydrobiologia》2000,437(1-3):149-155
We studied spatial niche metrics of large-bodied newts (Triturus cristatus and T. marmoratus) in three breeding ponds in western France. Adults and larvae were sampled with underwater funnel traps. Larvae were identified to the species with diagnostic microsatellite DNA markers. The distribution of adult T. cristatus and T. marmoratus across pond regions differed in one out of six cases, no differences were observed between larvae (two ponds studied). Niche overlap and niche breadth indices across resource states defined as pond regions or individual traps were high (Schoener's C: pond regions 0.60–0.98, traps 0.35–0.71; Levins' B: pond regions 0.71–0.98, traps 0.35–0.76). Adults of large-bodied newts significantly differed in resource use from small-bodied newts (T. helveticus). The results are discussed in view of the occurrence of interspecific breeding attempts, and the unpredictable ecological characteristics of newt breeding ponds.  相似文献   

15.
We used radiotelemetry to investigate the time of migratory flight initiation relative to available celestial orientation cues and departure direction of a nocturnal passerine migrant, the reed warbler, Acrocephalus scirpaceus, during autumn migration. The study was carried out at Falsterbo, a coastal site in southwest Sweden. The warblers initiated migration from times well after local sunset and well into the night, corresponding to sun elevations between -4 degrees and -35 degrees, coinciding with the occurrence of stars at night. They departed in the expected migratory direction towards south of southwest with a few initiating migration in reverse directions towards northeast to east. Flight directions under overcast conditions (7-8/8) were more scattered than under clear sky conditions (0-4/8). There were fewer clouds on departure nights than on nights when the birds did not initiate migration. For birds staying longer than one night at stopover the horizontal visibility was higher and precipitation was less likely on departure nights than on the previous night. The results show that the visibility of celestial cues, and stars in particular, are important for the decision to initiate migration in reed warblers. However, cloud cover, horizontal visibility and precipitation might be correlated with other weather variables (i.e. wind or air pressure) that are also likely to be important for the decision to migrate. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

16.
Talitrid amphipods use many cues for orientation during forays between temporary burrows and feeding areas, and for locating beaches when submerged, with visual cues being particularly important. Little evidence exists for polarized light among these visual cues despite extensive orientation by celestial and underwater polarized light in other crustaceans and in insects. We used electroretinography to assess spectral sensitivity in the eye of the beach flea Platorchestia platensis, and behavioral studies to test whether linearly polarized light serves as an orientation cue. Two spectral classes were present in the P. platensis eye with maxima at 431 and 520 nm. Non-uniform orientation of amphipods in the laboratory arena required either light/dark or polarized cues. Scototactic movements depended on arena conditions (day/night, wet/dry), while orientation under linearly polarized light was wavelength-dependent and parallel to the e-vector. Subsequent tests presented conflicting and additive scototactic and polarotactic cues to differentiate among these responses. In dry conditions, orientation parallel to the polarization e-vector overcame a dominant negative scototaxis, confirming that polarotaxis and scototaxis are separate orientation responses in this species. These behavioral results demonstrate talitrid amphipods can perceive and orient to linearly polarized light, and may use it to orient toward preferred zones on beaches.  相似文献   

17.
We investigated the orientation of juvenile pied flycatchers, Ficedula hypoleuca, during autumn migration in south Sweden using orientation cage experiments, to study the relative importance of visual and magnetic information at sunset. We performed cage tests under 12 experimental conditions that manipulated the geomagnetic and visual sunset cues available for orientation: natural clear skies in the local or a vertical magnetic field; simulated total overcast in the local or a vertical magnetic field; natural pattern of skylight polarization and directional information from stars screened off, with the sun's position as normal or shifted 120 degrees anticlockwise with mirrors; reduced polarization in the local or a vertical magnetic field; directions of polarization (e-vector) NE/SW and NW/SE, respectively, in the local or a vertical magnetic field. The pied flycatchers were significantly oriented towards slightly south of west when they could use a combination of skylight and geomagnetic cues. The mean orientation was significantly shifted along with the deflection of the sunset position by mirrors. Reduced polarization had no significant effect on orientation either in the local, or in a vertical, magnetic field. The birds tended to orient parallel with the axis of polarization, but only when the artificial e-vector was aligned NW/SE. The mean orientation under simulated total overcast in a vertical, and in the local, magnetic field was not significantly different from random. It is difficult to rank either cue as dominant over the other and we conclude that both visual and magnetic cues seem to be important for the birds' orientation when caught and tested during active migration. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

18.
Japanese eel is already magnetosensitive at the glass eel phase. However, currently, there is no evidence that they can use geomagnetic cues for orientation. We examined orientation behaviour in a radially symmetrical test arena in which the horizontal component of the geomagnetic field could be manipulated. Groups of glass eels released at the centre of the arena showed a mean orientation angle significantly biased to the south of 198° in the ambient geomagnetic field, but showed random orientation in the geomagnetic field when its horizontal component was cancelled in a solenoid. Results showed that they use geomagnetic cues for orientation.  相似文献   

19.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

20.
Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号