首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
从重庆市北碚区缙云山酸性黄壤(pH4.6)上生长的葛藤根瘤中分离到一株耐酸葛藤根瘤菌PR389,能在pH4.3的YMA培养基上正常生长,而一般根瘤菌最适生长pH值为6.5~7.5,说明PR389为一株耐酸葛藤根瘤菌。通过质子通量试验发现,与不耐酸的菌株相比,PR389的细胞膜能阻止过量的H 进入细胞,表明PR389具有某种能力使之在低酸性环境下不受伤害。在耐酸性试验中,PR389在加氯霉素的强酸性(pH3.8)YMA培养液中表现出来的耐酸性被氯霉素抑制,推测胞内特异蛋白质的诱导合成是PR389具有耐酸性的原因。  相似文献   

2.
钙离子对紫花苜蓿及苜蓿根瘤菌耐酸能力的影响   总被引:2,自引:0,他引:2  
土壤酸性是阻碍苜蓿根瘤菌与其宿主紫花苜蓿之间高效共生固氮的重要环境因子.本文研究了Ca2 对紫花苜蓿及苜蓿根瘤菌耐酸能力的影响.结果表明:加入一定浓度的Ca2 (5和10mmol·L-1)能提高苜蓿根瘤菌的生长速率,使苜蓿根瘤菌提前进入对数生长期.中性pH条件下,Ca2 的加入对苜蓿根毛变形率无显著影响;低pH条件下,加入2、5和10mmol·L-1的Ca2 均可提高根毛变形率,Ca2 浓度越高,其影响越显著,说明低pH下Ca2 可能会促进苜蓿根瘤菌与其宿主之间的识别.低pH条件下加入Ca2 可以使苜蓿结瘤提前,结瘤率提高;结瘤动力学检测结果表明,加入一定浓度的Ca2 可以使同期结瘤数增加,越是结瘤后期,环境pH越低,这种表现越明显.  相似文献   

3.
从重庆市北碚区缙云山酸性黄壤 (pH4.6)上生长的葛藤根瘤中分离到一株耐酸葛藤根瘤菌PR389,能在pH43的YMA培养基上正常生长,而一般根瘤菌最适生长pH值为6.5~7.5,说明PR389为一株耐酸葛藤根瘤菌。通过质子通量试验发现,与不耐酸的菌株相比,PR389的细胞膜能阻止过量的H+进入细胞,表明PR389具有某种能力使之在低酸性环境下不受伤害。在耐酸性试验中,PR389在加氯霉素的强酸性(pH3.8)YMA培养液中表现出来的耐酸性被氯霉素抑制,推测胞内特异蛋白质的诱导合成是PR389具有耐酸性的原因。  相似文献   

4.
自生条件下,测定准噶尔盆地南部的68株根瘤菌吸氢活力,获得一株Hup~+的冬箭筈豌豆根瘤菌C_(48)。经与紫云英根瘤菌株109及89比较,两者氢酶表达的最适pH相同;温度分别以20或30℃为宜;Ni~(2+)显著促进吸氢表达,但C_(48)还受Co~(2+ )、Mg~(2+)、Cu~(2+)的促进;紫云英根瘤菌的氨酶表达受碳水化合物抑制较冬箭筈豌豆根瘤菌明显。此外,自生条件下生长的Hup—菌株,经与宿主共生后,Hup~+的百分率大为增加。  相似文献   

5.
探讨了低pH条件下紫花苜蓿根毛变形和结瘤受到的影响及其机制。结果表明,在低pH条件下,初生根伸长和根瘤菌OD600值显著下降,根共生结瘤受到明显抑制。在接种根瘤菌、不加NF的条件下,pH5.0、pH4.7、pH4.5、pH4.2处理的根毛变形率分别比对照(pH6.5)减少了44.1%、56.4%、60.0%和69.0%;在加入NF、不接种根瘤菌的情况下,低pH(4.5)处理,根毛的变形也比对照(pH6.5)减少了45.9%。结果暗示,低pH条件下苜蓿结瘤初期的结瘤信号传导受阻,这可能是导致酸性条件下苜蓿结瘤减少的重要原因之一。  相似文献   

6.
培养条件对筛选根瘤菌突变体的影响   总被引:4,自引:1,他引:3  
将紫外线照射后的宁南2 号根瘤菌(Rhizobium legum inosarum Linglan 2)在不同光照和温度培养下表明,光照强度越大,照射时间越长,根瘤菌损伤就越大,存活率就越低,生长速度就越慢,而且光照还会降低突变株的耐酸碱特性。虽然培养温度对根瘤菌存活率和耐酸耐碱特性影响不大,但根瘤菌的生长和分裂速度则与温度有关。由此说明,培养条件在根瘤菌突变体的筛选中具有重要作用  相似文献   

7.
一、合成cDNA单链 1.按照实验3的操作程序,从哺乳类细胞中抽提poly(A)~+mRNA。 2.建立合成cDNA单链的反应系统:50mM Tris·HCI pH8.3(42℃时测定pH值);10mM MgCl_2;10mM DTT;4mM焦磷酸钠;1.25mM dGTP;1.25mM dATP;1.25mM TTP;0.5mM dCTP;15—20μCi α-~32P-dCTP(3000 Ci/mmol);100微克/毫升oligo(dT_12-18);150微克/毫升 Poly(A)~+mRNA;3000单位/毫升反转录酶,用水调节至最终体积为20或40微升。43℃保温30分钟。  相似文献   

8.
从异叶银合欢K(164)和K(794)的根瘤中各分离到一株根瘤菌,并且,对K164根瘤菌的形态特征和生理生化特性进行了研究。K(164)根瘤菌在平板上培养2天,菌落呈圆形,灰白色,直径约1.2mm;革兰氏染色呈阴性,无芽孢,有美膜,两根极生鞭毛;杆菌大小为2.2×0.89μm,增代时间为1.69小时,属快生型;最适生长温度为30℃,在39℃持续2天不能存活,在20℃以下不能生长;不耐盐,较耐酸,在pH4.5~6.6范围内均能生长,但不耐碱;对庆大霉素和青霉素敏感;对供试的10种糖都能利用,不液化明胶,不利用淀粉,B.T.B试验未变色,不能进行3-酮基乳糖反应,硝酸盐反应呈阳性,石蕊牛奶试验能胨化、还原、产碱,牛肉膏蛋白胨培养生长差,能利用柠檬酸盐;在自生条件下具有吸H2酶活性;回接后结瘤率达100%,根瘤具有固氮酶和吸H2酶活性。  相似文献   

9.
磁场对大豆共生固氮的效应   总被引:1,自引:0,他引:1  
恒定磁场处理慢生大豆根瘤菌“005”和接种后的大豆植株,发现磁场可以提高根瘤的固氮活性。在一定的磁场强度(70—100mT)下,固氮活性平均可以提高4—5倍,植株的结瘤数和根瘤重量平均提高2—3倍。从这样的根瘤中所分离出的根瘤菌,由慢生型转变成快生型,在100植株中有17株的根瘤分离出快生菌。生长世代时间和培养溶液中的pH值与慢生型不同,而与快生型相同。  相似文献   

10.
【目的】分离纯化青藏高原东麓(四川甘孜藏族自治州)高山豆根瘤菌,揭示其遗传多样性。【方法】采用纯培养法从该地区高山豆植物根瘤中分离纯化根瘤菌;通过BOXAIR、16S rDNA-RFLP及PCA(PrincipalComponent Analysis)来分析高山豆根瘤菌的遗传多样性;通过16S rDNA序列同源性确定菌株的系统发育地位;通过测定菌株的耐盐性、初始pH生长范围及生长温度范围来分析高山豆根瘤菌的抗逆性。【结果】从8个县12个采样点共分离纯化出22个菌株。22个菌株在16S rDNA PCR-RFLP分析中聚成4个遗传群,在BOX-PCR分析中则聚成9个遗传群。高山豆根瘤菌16S rDNASimpson遗传多样性指数D=0.872。22个菌株分别属于Rhizobium(11/22株)、Mesorhizobium(4/22株)、Rhizobium-Agrobacterium(7/22株)3个属。生理性状测定试验表明,所有菌株均能在1%NaCl的YMA培养基上生长,大多数(15/22株)菌株能在4%NaCl的YMA培养基上生长,其中,SCAU679、SCAU694、SCAU706等3个菌株能在7%NaCl的培养基上生长,SCAU689能在8%NaCl的培养基上生长;15/22的菌株能在pH4-11的培养基上生长;16/22的菌株能在4-45℃条件下生长,所有菌株能在60℃(处理10 min后置28℃)条件下生长。【结论】青藏高原东麓(四川甘孜州)高山豆根瘤菌具有丰富的遗传多样性。大多数菌株对高盐、高温、低温及过酸过碱环境均具有很强的耐受能力。  相似文献   

11.
Summary Nine media used to grow rhizobia were examined for their ability to maintain a stable low pH during the growth ofR. meliloti Large fluctuations in the pH of all media were recorded within 72 h, indicating their unsuitability for use in the selection of acid tolerant rhizobia. Morpholino-ethanesulphonic acid (MES) was assessed for its ability to buffer the pH of the media whilst still permitting rapid growth ofR. meliloti, R. trifolii, andBr. lupini. With 30.7 mM MES, the pH of a defined medium containing galactose, arabinose, and glutamate did not change from the initial value of 5.5 even though rhizobial numbers increased from 104 to 109 cells.ml–1. Even at a buffer concentration of 15.3 mM, pH only increased from 5.5 to 5.6. There was no effect of the buffer on rhizobial growth.  相似文献   

12.
Five hydrogen ion buffers were compared for their usefulness in regulating pH in a model oligotrophic, moderately acidic (pH 6.0) algal growth medium. These were 3,3-dimethylglutaric acid (DMGA), tricarbaliylic acid (TCA), trans-aconitic acid (tAA), N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES) and 2-(N-morpholino) ethanesulfonic acid (MES). All buffers (2.5 mM) except HEPES limited the reduction of pH in a NH4+-based medium during growth of Chrysochromulina breviturrita Nich. to less than 0.12 units, compared with more than 2 units in an unbuffered medium. Long term growth of C. breviturrita in these media was significantly inhibited (P < 0.05) by TCA and tAA. MES was able to control pH with the minimum amount of NaOH (1.0 mM) added to the medium to adjust to pH 6.0. Four of five bacterial isolates were capable of utilizing tAA as a sole organic-C source, and no isolate could metabolize HEPES or MES. No significant differences (P > 0.05) were found in the maximum growth rates of six algal species (from five classes) in a medium with or without MES buffer, although significantly greater cell yields of Ochromonas danica Prings. were obtained in the buffered medium. MES (pK4=6.15) was considered to be the most useful buffer in the pH range 5.0–6.5, due to its biological inertness, buffering capacity, the minimal requirement for excess base to adjust pH and its minimal metal complexing ability.  相似文献   

13.
We have examined the effect of medium-pH on rooting using 1-mm slices cut from stems of apple microshoots. Before autoclaving, the pH of the rooting medium was set at various pH values between 4.5 and 8.0. During autoclaving, the pH drifted in particular in the alkaline region. Additional changes occurred during culture and the range set at 4.5–8.0 had shifted to 5.2–6.0 after autoclaving and 3 weeks of culture. When 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) had been added as buffering agent, the pH was stable when set at 5.0–6.5. Highest rooting was achieved at pH ~5.3 with and without MES (pH measured after autoclaving). This maximum did not correlate with highest auxin uptake. MES inhibited adventitious root formation during the initial phase of root formation when the meristemoids are being formed (ca. 30% reduction at 10 mM) but was promotive during outgrowth of the meristemoids to roots (30% increase at 10 mM). Inhibition and promotion by MES were not related to its buffering action as they were observed at all pHs.  相似文献   

14.
The fungal plant pathogen Sclerotinia sclerotiorum was studied to determine its ability to degrade salicylate, an important defense-signaling molecule in plants. S. sclerotiorum D-E7 was grown at 25 °C in an undefined medium (50 ml) containing minerals, 0.1 % soytone, 50 mM MES buffer (pH 6.5), 25 mM glucose, and 1 mM salicylate. Glucose, oxalate, and salicylate concentrations were monitored by HPLC. S. sclerotiorum D-E7 was found to be active in salicylate degradation. However, salicylate alone was not growth supportive and, at higher levels (10 mM), inhibited glucose-dependent growth. Biomass formation (130 mg [dry wt] of mycelium per 50 ml of undefined medium), oxalate concentrations (~10 mM), and culture acidification (final culture pH approximated 5) were essentially the same in cultures grown with or without salicylate (1 mM). Time-course analyses revealed that salicylate degradation and glucose consumption were complete after 7 days of incubation and was concomitant with growth. Trace amounts of catechol, a known intermediate of salicylate metabolism, were detected during salicylate degradation. Overall, these results indicated that S. sclerotiorum has the ability to degrade salicylate and that the presence of low levels of salicylate did not affect growth or oxalate production by S. sclerotiorum.  相似文献   

15.
The role of proton excretion in the growth of apical segments of maize roots has been examined. Growth is stimulated by acidic buffers and inhibited by neutral buffers. Organic buffers such as 2[N-morpholino] ethane sulphonic acid (MES) — 2-amino-2-(hydroxymethyl)propane-1,3 diol (Tris) are more effective than phosphate buffers in inhibiting growth. Fusicoccin(FC)-induced growth is also inhibited by neutral buffers. The antiauxins 4-chlorophenoxyisobutyric acid (PCIB) and 2-(naphthylmethylthio) propionic acid (NMSP) promote growth and H+-excretion over short time periods; this growth is also inhibited by neutral buffers. We conclude that growth of maize roots requires proton extrusion and that regulation of root growth by indol-3yl-acetic acid (IAA) may be mediated by control of this proton extrusion.Abbreviations IAA indol-3yl-acetic acid - ABA abscisic acid - FC fusicoccin - PCIB 4-chlorophenoxy-isobutyric acid - MES 2(N-morpholino)ethane sulphonic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3-diol - NMSP 2-(naphthylmethylthio)propionic acid  相似文献   

16.
Rhizobial taxonomy and systematics have progressed substantially, nevertheless, few studies have been developed on venezuelan species. This study evaluated the phenotypic and genetic variation between 12 venezuelan indigenous rhizobial isolates and 10 international referential strains, by phenotypical traits and DNA molecular markers. In this regard, a PCR-RFLP of the 16S rDNA gene, the presence of large plasmids, metabolic assays in solid media, salinity resistance, pH and temperature growth conditions, and intrinsic antibiotic resistance were assayed. In reference to the phenotypic attributes, we recognized three main groups: A group I, which comprised all the strains metabolizing between 67.5%-90% of the C and N sources. They were also acid-tolerant, as well as acid producers, capable of growing at 40 degrees C and in high salinity conditions (2-2.5% NaCl). With regard to the antibiotic sensitivity, this group was susceptible to a 30% of the antibiotic assayed. Strains belonging to Group II exhibited a lower salt tolerance (0.1-1.5%NaCl), as well as a lower acid tolerance, since they grew well at pH values equal or higher than 5.0. This group appeared to be resistant to all of the antibiotics assayed and only metabolized between 52.5%-82.5% of the C and N sources. Group III was represented by a single bacterial strain: it has a extremely low salt tolerance (0.1% NaCl). This strain grew at a pH equal or higher than 5.6, was susceptible to 50% of the antibiotics assayed and metabolized 72% of the C and N sources. On the basis of a PCR- RFLP of the 16S rDNA, three groups were also obtained. Members of the group A showed a close resemblance to Rhizobium tropici CIAT 899 and Sinorhizobium americanum CFN-EI 156, while Group B was closely related to Bradyrhizobium spp. Group C, was also represented by only one isolate. The Trebol isolate, was the only one strain able to form nodules and does not appear to be related to any of the referential rhizobial strains, suggesting a possible symbiotic horizontal gene transfer. Finally, in this work, there are evidences of a genetic diversity in the venezuelan rhizobial strains. A different geographical origin is perhaps an important factor affecting the diversity of the indigenous rhizobia in this study.  相似文献   

17.
In addition to forming symbiotic nodules on legumes, rhizobial strains are members of soil or rhizosphere communities or occur as endophytes, e.g., in rice. Two rhizobial strains which have been isolated from root nodules of the aquatic legumes Aeschynomene fluminensis (IRBG271) and Sesbania aculeata (IRBG74) were previously found to promote rice growth. In addition to analyzing their phylogenetic positions, we assessed the suitability of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (IGS) sequences for the differentiation of closely related rhizobial taxa and for the development of PCR protocols allowing the specific detection of strains in the environment. 16S rDNA sequence analysis (sequence identity, 99%) and phylogenetic analysis of IGS sequences showed that strain IRBG271 was related to but distinct from Bradyrhizobium elkanii. Rhizobium sp. (Sesbania) strain IRBG74 was located in the Rhizobium-Agrobacterium cluster as a novel lineage according to phylogenetic 16S rDNA analysis (96.8 to 98.9% sequence identity with Agrobacterium tumefaciens; emended name, Rhizobium radiobacter). Strain IRBG74 harbored four copies of rRNA operons whose IGS sequences varied only slightly (2 to 9 nucleotides). The IGS sequence analyses allowed intraspecies differentiation, especially in the genus Bradyrhizobium, as illustrated here for strains of Bradyrhizobium japonicum, B. elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium sp. (Chamaecytisus) strain BTA-1. It also clearly differentiated fast-growing rhizobial species and strains, albeit with lower statistical significance. Moreover, the high sequence variability allowed the development of highly specific IGS-targeted nested-PCR assays. Strains IRBG74 and IRBG271 were specifically detected in complex DNA mixtures of numerous related bacteria and in the DNA of roots of gnotobiotically cultured or even of soil-grown rice plants after inoculation. Thus, IGS sequence analysis is an attractive technique for both microbial ecology and systematics.  相似文献   

18.
Yamanaka T 《Mycologia》2003,95(4):584-589
Some saprotrophic and ectomycorrhizal fungi produce reproductive structures, preferably in slightly alkaline to neutral forest soil. This research examines the growth of these "ammonia fungi" in liquid medium at various pH values. In the first experiment, the capacity of six buffers was examined to select appropriate buffers for stabilizing pH in the neutral-to-alkaline range by culture of three species of the ammonia fungi in media initially adjusted to pH 7, 8 or 9. The highest buffering capacity was shown in 2-(N-morpholino) ethanesulfonic acid (MES) at pH 7, and N, N-bis (2-hydroxyethyl) glycine (Bicine) and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) at pH 8 and 9. In the second experiment, the growth of 15 strains of both saprotrophic and ectomycorrhizal ammonia fungi was tested on the medium initially adjusted to pH 3, 4, 5, 6 or 7 with MES, or to pH 8 or 9 buffered with Bicine. Many of the saprotrophic species grew well at pH 7 or 8; the ectomycorrhizal species showed optimum growth at pH 5 or 6. The pH suitable for the in vitro growth of these fungi was correlated with the pH of forest soil where these fungi occur.  相似文献   

19.
AIMS: Ten rhizobial isolates obtained from different locations in Egypt were examined for their ability to survive under stress conditions and their growth response to increasing levels of NaCl (1-8% w/v), pH (4-10), CaCO3 (1-10% w/v) and 12 antibiotics. METHODS AND RESULTS: All the rhizobial isolates tolerated a NaCl concentration up to 5% and were divided into two groups with respect to NaCl tolerance. The rhizobial isolates from group two showed significantly (P < 0.05) better survival under high NaCl concentration. All the tested isolates survived acidic (pH 4-5) and alkaline conditions (pH 9-10) and CaCO3 (up to 10% w/v) in liqued YEM medium. CONCLUSION: Antibiotic resistance patterns did not correlate to NaCl, pH or CaCO3 tolerance. Variations among different strains showed that there is potential to improve strain performance under stress conditions. Significance and Impact of the Study: The results suggest that selection of adapted strains under stress conditions is possible and can be used as inoculants for successful lupin growth.  相似文献   

20.
A high concentration of potassium phosphate (75–100 mM) stabilized pH and supported extensive growth of Streptomyces clavuligerus in a chemically defined medium; such a concentration also inhibited cephalosporin production. Although Tris buffer was found to have detrimental effects on growth and antibiotic production, 3-(N-morpholino)-propane sulfonate (MOPS) or 2-(N-morpholino)-ethane sulfonate (MES) buffer provided a nontoxic buffering system. In the presence of MOPS buffer, cephalosporin production was optimal at 25 mM phosphate, whereas higher concentrations of phosphate progressively inhibited antibiotic production up to 85% without modifying the pH pattern. MOPS buffer can be used to conduct fermentations at a relatively constant pH value in shake flasks.List of Non-Common Abbreviations MOPS 3-(N-morpholino)propane sulfonic acid - MES 2-(N-morpholino)ethane sulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号