首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The ATPase inhibitior protein has been isolated from rat liver mitochondria in purified form. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis is approximately 9500, and the isoelectric point is 8.9. (2) The protein inhibits both the soluble ATPase and the particle-bound ATPase from rat liver mitochondria. It also inhibits ATPase activities of soluble F1, and inhibitor-depleted submitochondrial particles derived from bovine heart mitochondria. (3) On particle-bound ATPase the inhibitor has its maximal effect if incubated in the presence of Mg2+. ATP at slightly acidic pH. (4) The inhibitor has a minimal effect on Pi-ATP exchange activity in sonicated submitochondrial particles. However, unexpectedly the inhibitor greatly stimules Pi-ATP exchange activity in whole mitochondria while the low ATPase activity of the mitochondria is not affected. The possible mechanism of action of the inhibitor on intact mitochondria is offered.  相似文献   

2.
(1) The ATPase inhibitor protein has been isolated from rat liver mitochondria in purified form. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis is approximately 9500, and the isoelectric point is 8.9.

(2) The protein inhibits both the soluble ATPase and the particle-bound ATPase from rat liver mitochondria. It also inhibits ATPase activities of soluble F1, and inhibitor-depleted submitochondrial particles derived from bovine heart mitochondria.

(3) On particle-bound ATPase the inhibitor has its maximal effect if incubated in the presence of Mg2+. ATP at slightly acidic pH.

(4) The inhibitor has a minimal effect on Pi-ATP exchange activity in sonicated submitochondrial particles. However, unexpectedly the inhibitor greatly stimulates Pi-ATP exchange activity in whole mitochondria while the low ATPase activity of the mitochondria is not affected. The possible mechanism of action of the inhibitor on intact mitochondria is offered.  相似文献   


3.
A heat-stable protein has been purified from rat liver mitochondria which inhibits the ATP hydrolytic activity of both the soluble and membrane-bound mitochondrial F1-ATPase. The overall purification is about 2400-fold with the major purification step consisting of Sephadex "affinity" chromatography. The purified rat liver inhibitor is homogeneous as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 12,300. Amino acid analysis reveals a high content of glutamic acid, lysine, and arginine and the absence of cysteine, proline and methionine. Whether tested with the rat liver or bovine heart ATPase, the liver inhibitor is equally as potent and specific as the heart inhibitor preparation of Pullman and Monroy (Pullman, M.E., and Monroy, G.C. (1963) J. Biol. Chem. 238, 3762-3769). Although the results presented show that the rat liver ATPase inhibitor resembles closely the ATPase inhibitors from other tissues with respect to specific activity and reaction specificity, it is important to note that the rat liver inhibitor is almost 2000 daltons larger than the bovine heart inhibitor, about 5000 daltons larger than ATPase inhibitors of yeast, and contains significantly more lysine residues than both the bovine heart and yeast inhibitors.  相似文献   

4.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

5.
The uncoupler-induced inactivation of H(+)-ATPase in liver mitochondria from ground squirrel has been studied. The dependence of this process on delta mu H+, pH and ATP indicates that it is caused by the protein inhibitor. This conclusion is also supported by the protective effect of Zn2+ and Cu2+. The inactivation can be induced by Ca2+ at low concentrations in the presence of phosphate. It is shown that the protein inhibitor inactivates ATPase almost completely under optimal conditions while its effect in mice or rat liver mitochondria does not exceed 30%. The potential efficiency of the inhibitor's action does not depend on either the season or the state of animals (hibernating or active). At the same time, the sensitivity of this system to Ca2+ is significantly lower in active (summer) animals.  相似文献   

6.
The ATPase activity of Zajdela hepatoma and Yoshida sarcoma submitochondrial particles was several times lower than the enzyme activity in rat heart and rat liver submitochondrial particles. The content of F1-ATPase in the tumor mitochondria was found not to be very different from that in mitochondria of rat liver. Immunochemical determination of the amount of the natural ATPase inhibitor revealed that the tumor mitochondria contain 2-3-times more ATPase inhibitor than control mitochondria. It is concluded that the low ATPase activity of the tumor mitochondria results from the inhibition of the enzyme activity by the natural ATPase inhibitor.  相似文献   

7.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver mitochondria was investigated. The presence of regucalcin (0.1, 0.25, and 0.5 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-5) M) or lanthanum chloride (10(-4) M), an inhibitor of mitochondrial Ca(2+) uptake, completely inhibited regucalcin (0.25 microM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (0.25 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, or vanadate (10(-5) M), an inhibitor of phosphorylation of ATPase. The activatory effect of regucalcin (0.25 microM) on Ca(2+)-ATPase activity was not further enhanced in the presence of dithiothreitol (2.5 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme, or calmodulin (0.60 microM), a modulator protein of Ca(2+) action that could increase mitochondrial Ca(2+)-ATPase activity. The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver mitochondria, and that the protein may act on an active site (SH group)-related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

8.
The binding of calmodulin to the mitochondrial F1.F0-ATPase has been studied. [125I]Iodoazidocalmodulin binds to the epsilon-subunit and to the endogeneous ATPase inhibitor peptide in a Ca2+-dependent reaction. The effect of the mitochondrial ATPase inhibitor peptide on the purified Ca2+-ATPase of erythrocytes has also been analyzed. The inhibitor peptide stimulates the ATPase when pre-incubated with the enzyme. The activation of the Ca2+-ATPase by calmodulin is not influenced by the inhibitor peptide, indicating that the two mechanisms of activation are different. These in vitro effects of the two regulatory proteins may reflect a common origin of the two ATPases considered and/or of the regulatory proteins.  相似文献   

9.
The mechanism of Ca2+ transport by rat liver mitochondria was investigated with respect to the possible involvement of calmodulin in this process. We studied the action of exogenous calmodulin isolated from brain tissue on the Ca2+-transport system, as well as the effect of two types of calmodulin antagonists; the phenothiazine drugs trifluoperazine and chlorpromazine and the more specific substance compound 48/80. Our results show that Ca2+ transport by mitochondria and mitochondrial ATPase activity are insensitive to exogenous calmodulin, although they can be inhibited by the phenothiazines. Since no effect of compound 48/80 was observed, we believe that the phenothiazines act through a mechanism that does not involve calmodulin. This is in accord with our inability to locate significant quantities of calmodulin in mitochondria by radioimmunoassay analysis. Our results further show that trifluoperazine and chlorpromazine also inhibit the electron-carrier system of the respiratory chain, and this effect may mediate their inhibitory action on Ca2+ transport when it is energized by respiration instead of ATP hydrolysis.  相似文献   

10.
Some features of H+-ATPase function in intact mitochondria of rat liver were studied. Simultaneously the activities of ATPase and proton translocase were measured, using a previously described technique. The proton translocation coefficient of H+-ATPase has been found to be equal to 3.6. The protonophore 3.5-di-tert-butyl-4-hydroxybenzylidenemalononitrile diminishes the proton translocation coefficient. It was concluded that when considering the mechanism of proton translocation by H+-ATPase, it is necessary to assume the possibility of transport of 3 or 4 protons per every hydrolyzed molecule of ATP allowing a changeable efficiency of the process. The decrease of the translocase coefficient in the presence of the protonophore appears to result from the ability of this uncoupler to return the transferred protons to the mitochondrial matrix.  相似文献   

11.
The ATPase activity (proton ATPase) of rat liver mitochondria was studied 2, 24, 28, 96 and 168 h after acute tetrachloromethane poisoning. It is established that the tetrachloromethane poisoning. It is established that the tetrachloromethane poisoning is accompanied by a considerable activation of mitochondrial H+-ATPase and a decrease of the DNP and Ca+, Na+ and K+ activating influence on it. Maximum changes in the H+-ATPase activity is observed 24 h after poisoning. Changes in the H+-ATPase properties are accompanied by a fall in the alpha-ketoglutarate dehydrogenase and succinate dehydrogenase activities and by disturbance of the liver mitochondria contractile properties. The electrochemical membrane potential of the mitochondria under the effect of tetrachloromethane is supposed to be reduced due to a primary damage of the phospholipid matrix of the coupling membrane and an increase in its proton conductivity.  相似文献   

12.
Control processes in oxidative phosphorylation have been studied in three experimental models. (1) In isolated yeast mitochondria, external ATP is a regulatory effector of cytochrome-c oxidase activity. In phosphorylating or uncoupling states, the relationships between respiratory rate and delta mu H+, and the respiratory rate and cytochrome-c oxidase reduction level are dependent on this kinetic regulation. (2) In rat liver mitochondria, the response of the respiratory rate to uncoupler addition is age-dependent: liver mitochondria isolated from young rats maintain a greater delta mu H+ than liver mitochondria isolated from adults, with the same respiratory rate obtained with the same concentration of uncoupler. This behaviour is linked to redox proton pump properties, i.e., to the degree of intrinsic uncoupling induced by uncoupler addition. (3) The effect of almitrine, a new kind of ATPase/ATPsynthase inhibitor, was studied in mammalian mitochondria. (i) Almitrine inhibits oligomycin-sensitive ATPase - it decreases the ATPase/O value without any change in delta mu H+; (ii) almitrine increased the mechanistic H+/ATP stoichiometry of ATPase/ATPsynthase; (iii) almitrine-induced changes in H+/ATPase stoichiometry depend on the flux magnitude through ATPase. These results are discussed in terms of the following interdependent parameters; flux value, force, pump efficiency and control coefficient.  相似文献   

13.
Purified Ca(2+)-stimulated, Mg(2+)-dependent ATPase (Ca(2+)-ATPase) from human erythrocytes was phosphorylated with a stoichiometry of about 1 mol of phosphate/mol of ATPase at both threonine and serine residues by purified rat brain type III protein kinase C. In the presence of calmodulin, the phosphorylation was markedly reduced. Labeled phosphate from [gamma-32P]ATP was retained on an 86-kDa calmodulin-binding tryptic fragment of Ca(2+)-ATPase but not on 82- and 77-kDa non-calmodulin-binding fragments. Similarly, fragmentation of the phosphorylated Ca(2+)-ATPase by calpain I revealed that calmodulin-binding fragments (127 and 125 kDa) retained phosphate label whereas a non-calmodulin-binding fragment (124 kDa) did not. The calmodulin-binding domain, located about 12 kDa from the carboxyl terminus of the Ca(2+)-ATPase, was thus located as a site of protein kinase C phosphorylation. A synthetic peptide corresponding to a segment of the calmodulin-binding domain (H2 N-R-G-L-N-R-I-Q-T-Q-I-K-V-V-N-COOH) was indeed phosphorylated at the single threonine residue within this sequence. The additional serine phosphorylation site was carboxyl terminal to the calmodulin domain. Phosphorylation by purified type III protein kinase C (canine heart) antagonized the calmodulin activation of the Ca(2+)-ATPase, particularly at lower Ca2+ concentrations (0.2-1.0 microM). By contrast, a purified but unresolved protein kinase C isoenzyme mixture from rat brain stimulated the activity of Ca(2+)-ATPase prepared in asolectin, but not glycerol, by more than 2-fold in the presence of the ionophore A23187, without increasing its Ca2+ sensitivity. The results clearly indicate that human erythrocyte Ca(2+)-ATPase is a substrate of protein kinase C, but the effect of phosphorylation on the activity of the enzyme depends on the isoenzyme form of protein kinase C used and on the lipid associated with the Ca(2+)-ATPase.  相似文献   

14.
The uncoupler-induced inactivation of H+-ATPase in hepatoma 22a and mouse liver mitochondria has been studied. The dependence of this process on delta microH, and pH and ATP was established. The inactivated ATPase could be reactivated at alkaline pH values in the absence of ATP. These data indicate that the inactivation is apparently caused by the natural protein inhibitor. ATP- and pH-dependent decrease of ATPase activity is also observed after Lubrol-WX disruption of mitochondria. It can be proposed that practically all ATPase molecules in hepatoma mitochondria are in a catalytically active complex with the protein inhibitor. At low delta microH this complex is inactivated via reversible pH-dependent and irreversible ATP-dependent rearrangements. The pH-dependent rearrangement of the isolated protein inhibitor from hepatoma mitochondria is also observed.  相似文献   

15.
An endogenous ATPase inhibitor protein has been identified and isolated for the first time from plant mitochondria. The inhibitor protein was isolated from potato (Solanum tuberosum) tuber mitochondria and purified to homogeneity. The isolated inhibitor is a heat-stable, trypsin-sensitive, basic protein, with a molecular mass approximately 8.3 kDa. Amino acid analysis reveals a high content of glutamic acid, lysine and arginine and the absence of proline; threonine and leucine. The interaction of the inhibitor with F1-ATPase requires the presence of Mg2(+)-ATP in the incubation medium. The ATPase activity of isolated F1 is inhibited to 50% in the presence of 14 micrograms inhibitor/mg F1. A stoichiometry of 1.3 mol inhibitor/mol F1 for complete inhibition can be calculated from this value. The potato ATPase inhibitor is also a potent inhibitor of the ATPase activity of the isolated yeast F1. The inhibitor resembles the ATPase inhibitors of yeast and mammalian mitochondria, and does not seem to be related to the inhibitory peptide, epsilon subunit, of chloroplast ATPase.  相似文献   

16.
The hydrolytic and phosphorylation activities of the ATPase complex of bovine heart mitochondria are regulated by the ATPase inhibitor of Pullman and Monroy [1]. The inhibiting action of the peptide on ATPase activity can be overcome by a proton-motive force. Submitochondrial particles that contain the inhibitor, either intrinsically or externally added, show a lag that precedes phosphorylation. Particles devoid of the inhibitor, of particles that are in an 'active' state fail to present the lag. Accordingly, the data indicate that, prior to the onset of phosphorylation, the ATPase complex undergoes a transition to an active state through a process that involves the inhibitor. The transition depends on the concentration of ATP, 50 microM ATP giving 50% inhibition of the proton-motive force-induced transition.  相似文献   

17.
The hydrolytic and phosphorylation activities of the ATPase complex of bovine heart mitochondria are regulated by the ATPase inhibitor of Pullman and Monroy [1]. The inhibiting action of the peptide on ATPase activity can be overcome by a proton-motive force. Submitochondrial particles that contain the inhibitor, either intrinsically or externally added, show a lag that precedes phosphorylation. Particles devoid of the inhibitor, or particles that are in an ‘active’ state fail to present the lag. Accordingly, the data indicate that, prior to the onset of phosphorylation, the ATPase complex undergoes a transition to an active state through a process that involves the inhibitor. The transition depends on the concentration of ATP, 50 μM ATP giving 50% inhibition of the proton-motive force-induced transition.  相似文献   

18.
The interrelationship between the ATPase and H+-translocase functions of mitochondrial H+-ATPase was studied. The efficiency of the functioning was estimated by the value of coupling coefficient (Kc), which is represented by a ratio of proton translocation rate versus ATP coupling hydrolysis rate. It was shown that under conditions of increased concentrations of ATP and low concentrations of oligomycin the value of Kc is decreased. The increase in the concentration of valinomycin results in an increase of Kc. It was also found that the H+-ATPase activity shows a considerable increase during incubation of mitochondria, reaching its maximum with respect to both functions 1--2 min after addition of ATP. The data obtained are indicative of a lack of tight coupling between the H+-translocase and ATPase functions of mitochondrial H+-ATPase. The mechanism of action of H+-ATPase is discussed.  相似文献   

19.
A study is presented of the action of triphenyltin on the kinetics of the anaerobic relaxation of the proton gradient set up by respiration in various type of 'inside-out' inner membrane vesicles obtained by exposure of beef-heart mitochondria to ultrasonic energy. Triphenyltin is shown to act as a powerful inhibitor of the proton conductivity of the H+-ATPase. The inhibition persists after removal of the ATPase protein inhibitor, F1 and the oligomycin-sensitivity conferral protein (OSCP) from the particles. The inhibitory effect of triphenyltin is exerted, as in the case of oligomycin and N,N'-dicyclohexylcarbodiimide, on the F0 moiety of the ATPase complex. Comparison of the characteristics of the effect of triphenyltin on proton translocation in chloride and nitrate media shows that the inhibition of passive proton conductivity studied here is unrelated to the hydroxide/anion exchange induced by the organotin. Lack of additivity of the inhibition of H+ conduction by triphenyltin with that exerted by oligomycin and N,N'-dicyclohexylcarbodiimide and the kinetic pattern of the effect of triphenyltin show that the mechanism of action of the organotin is different from that of the other two inhibitors. The relevance of the results obtained with respect to the subunit location and chemical nature of the reaction site of triphenyltin in the H+-ATPase complex is discussed.  相似文献   

20.
The effect of regucalcin, which is a regulatory protein of Ca(2+) signaling, on Ca(2+)-ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-6) M) or lanthunum chloride (10(-6) M), an inhibitor of mitochondrial Ca(2+) uptake, markedly inhibited regucalcin (100 nM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (100 nM) in elevating Ca(2+)-ATPase activity was completely prevented by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca(2+)-ATPase activity was not further enhanced by calmodulin (0.30 microM) or dibutyryl cyclic AMP (10(-4) M), which could increase Ca(2+)-ATPase activity. Trifluoperazine (TFP; 50 microM), an antagonist of calmodulin, significantly decreased Ca(2+)-ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca(2+)-pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号