首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinectin is a kinesin-binding protein (Toyoshima et al., 1992) that is required for kinesin-based motility (Kumar et al., 1995). A kinectin cDNA clone containing a 4.7-kilobase insert was isolated from an embryonic chick brain cDNA library by immunoscreening with a panel of monoclonal antibodies. The cDNA contained an open reading frame of 1364 amino acids encoding a protein of 156 kDa. A bacterially expressed product of the full length cDNA bound purified kinesin. Transient expression in CV-1 cells gave an endoplasmic reticulum distribution that depended upon the N-terminal domain. Analysis of the predicted amino acid sequence indicated a highly hydrophobic near N-terminal stretch of 28 amino acids and a large portion (326-1248) of predicted alpha helical coiled coils. The 30-kDa fragment containing the N-terminal hydrophobic region was produced by cell-free in vitro translation and found to assemble with canine pancreas rough microsomes. Cleavage of the N terminus was not observed confirming its role as a potential transmembrane domain. Thus, the kinectin cDNA encodes a cytoplasmic-oriented integral membrane protein that binds kinesin and is likely to be a coiled-coil dimer.  相似文献   

2.
Kinectin has been proposed to be a membrane anchor for kinesin on intracellular organelles. A kinectin isoform that lacks a major portion of the kinesin-binding domain does not bind kinesin but interacts with another resident of the endoplasmic reticulum, the translation elongation factor-1 delta (EF-1 delta). This was shown by yeast two-hybrid analysis and a number of in vitro and in vivo assays. EF-1 delta provides the guanine nucleotide exchange activities on EF-1 alpha during elongation step of protein synthesis. The minimal EF-1 delta-binding domain on kinectin resides within a conserved region present in all the kinectin isoforms. Overexpression of the kinectin fragments in vivo disrupted the intracellular localization of EF-1 delta proteins. This report provides evidence of an alternative kinectin function as the membrane anchor for EF-1 delta on the endoplasmic reticulum and provides clues to the EF-1 complex assembly and anchorage on the endoplasmic reticulum.  相似文献   

3.
RhoG is a member of the Rho family of GTPases that activates Rac1 and Cdc42 through a microtubule-dependent pathway. To gain understanding of RhoG downstream signaling, we performed a yeast two-hybrid screen from which we identified kinectin, a 156-kDa protein that binds in vitro to conventional kinesin and enhances microtubule-dependent kinesin ATPase activity. We show that RhoG(GTP) specifically interacts with the central domain of kinectin, which also contains a RhoA binding domain in its C terminus. Interaction was confirmed by coprecipitation of kinectin with active RhoG(G12V) in COS-7 cells. RhoG, kinectin, and kinesin colocalize in REF-52 and COS-7 cells, mainly in the endoplasmic reticulum but also in lysosomes. Kinectin distribution in REF-52 cells is modulated according to endogenous RhoG activity. In addition, by using injection of anti-kinectin antibodies that challenge RhoG-kinectin interaction or by blocking anti-kinesin antibodies, we show that RhoG morphogenic activity relies on kinectin interaction and kinesin activity. Finally, kinectin overexpression elicits Rac1- and Cdc42-dependent cytoskeletal effects and switches cells to a RhoA phenotype when RhoG activity is inhibited or microtubules are disrupted. The functional links among RhoG, kinectin, and kinesin are further supported by time-lapse videomicroscopy of COS-7 cells, which showed that the microtubule-dependent lysosomal transport is facilitated by RhoG activation or kinectin overexpression and is severely stemmed upon RhoG inhibition. These data establish that kinectin is a key mediator of microtubule-dependent RhoG activity and suggest that kinectin also mediates RhoG- and RhoA-dependent antagonistic pathways.  相似文献   

4.
In the course of screening a lambdagt11 human leukemic T-cell cDNA expression library with an antibody specific to the mitotic target of Src, Sam68, we identified and cloned a cDNA encoding a novel protein with a predicted molecular mass of 51.4 kDa. Polyclonal antibodies raised to a His(6)-tagged construct of this protein, detected a approximately 67-kDa protein in immunoprecipitation experiments, and cytological studies showed that this protein localized to the Golgi complex, through colocalization experiments with specific Golgi markers. Therefore, we designated this protein golgin-67. Sequence analysis revealed that golgin-67 is a highly coiled-coil protein, with potential Cdc2 and Src kinase phosphorylation motifs. It has sequence homologies to other Golgi proteins, including the coatamer complex I vesicle docking protein, GM130. Structurally, golgin-67 resembles, golgin-84, an integral membrane Golgi protein with an N-terminal coiled-coil domain and a single C-terminal transmembrane domain. The C-terminal region of golgin-67, which contains a predicted transmembrane domain, was demonstrated to be essential for its Golgi localization.  相似文献   

5.
Kinectin is an integral membrane protein with many isoforms primarily found on the endoplasmic reticulum. It has been found to bind kinesin, Rho GTPase, and translation elongation factor-1delta. None of the existing models for the quaternary organization of the elongation factor-1 complex in higher eukaryotes involves kinectin. We have investigated here the assembly of the elongation factor-1 complex onto endoplasmic reticulum via kinectin using in vitro and in vivo assays. We established that the entire elongation factor-1 complex can be anchored to endoplasmic reticulum via kinectin, and the interacting partners are as follows. Kinectin binds EF-1delta, which in turn binds EF-1gamma but not EF-1beta; EF-1gamma binds EF-1delta and EF-1beta but not kinectin. In vivo splice blocking of the kinectin exons 36 and 37 produced kinectin lacking the EF-1delta binding domain, which disrupted the membrane localization of EF-1delta, EF-1gamma, and EF-1beta on endoplasmic reticulum, similar to the disruptions seen with the overexpression of kinectin fragments containing the EF-1delta binding domain. The disruptions of the EF-1delta/kinectin interaction inhibited expression of membrane proteins but enhanced synthesis of cytosolic proteins in vivo. These findings suggest that anchoring the elongation factor-1 complex onto endoplasmic reticulum via EF-1delta/kinectin interaction is important for regulating protein synthesis in eukaryotic cells.  相似文献   

6.
Kinectin, a major kinesin-binding protein on ER   总被引:27,自引:5,他引:22       下载免费PDF全文
Previous studies have shown that microtubule-based organelle transport requires a membrane receptor but no kinesin-binding membrane proteins have been isolated. Chick embryo brain microsomes have kinesin bound to their surface, and after detergent solubilization, a matrix with an antibody to the kinesin head domain (SUK-4) (Ingold et al., 1988) bound the solubilized kinesin and retained an equal amount of a microsome protein of 160-kD. Similarly, velocity sedimentation of solubilized membranes showed that kinesin and the 160-kD polypeptide cosedimented at 13S. After alkaline treatment to remove kinesin from the microsomes, the same 160-kD polypeptide doublet bound to a kinesin affinity resin and not to other proteins tested. Biochemical characterization localized this protein to the cytoplasmic face of brain microsomes and indicated that it was an integral membrane protein since it was resistant to alkaline washing. mAbs raised to chick 160-kD protein demonstrated that it was absent in the supernatant and concentrated in the dense microsome fraction. The dense microsome fraction also had the greatest amount of microtubule-dependent motility. With immunofluorescence, the antibodies labeled the ER in chick embryo fibroblasts (similar to the pattern of bound kinesin staining in the same cells) (Hollenbeck, P. J. 1989. J. Cell Biol. 108:2335-2342), astroglia, Schwann cells and dorsal root ganglion cells but staining was much less in the Golgi regions of these cells. Because this protein is a major kinesin-binding protein of motile vesicles and would be expected to bind kinesin to the organelle membrane, we have chosen the name, kinectin, for this protein.  相似文献   

7.
Calcium-activated chloride channel (CLCA) proteins were first described as a family of plasma membrane Cl(-) channels that could be activated by calcium. Genetic and electrophysiological studies have supported this view. The human CLCA2 protein is expressed as a 943-amino-acid precursor whose N-terminal signal sequence is removed followed by internal cleavage near amino acid position 680. Earlier investigations of transmembrane geometry suggested five membrane passes. However, analysis by the more recently derived simple modular architecture research tool algorithm predicts that a C-terminal 22-amino-acid hydrophobic segment comprises the only transmembrane pass. To resolve this question, we raised an antibody against hCLCA2 and investigated the synthesis, localization, maturation, and topology of the protein. Cell surface biotinylation and endoglycosidase H analysis revealed a 128-kDa precursor confined to the endoplasmic reticulum and a maturely glycosylated 141-kDa precursor at the cell surface by 48 h post-transfection. By 72 h, 109-kDa N-terminal and 35-kDa C-terminal cleavage products were detected at the cell surface but not in the endoplasmic reticulum. Surprisingly, however, the 109-kDa product was spontaneously shed into the medium or removed by acid washes, whereas the precursor and 35-kDa product were retained by the membrane. Two other CLCA family members, bCLCA2 and hCLCA1, also demonstrated preferential release of the N-terminal product. Transfer of the hCLCA2 C-terminal hydrophobic segment to a secreted form of green fluorescent protein was sufficient to target that protein to the plasma membrane. Together, these data indicate that hCLCA2 is mostly extracellular with only a single transmembrane segment followed by a short cytoplasmic tail and is itself unlikely to form a channel.  相似文献   

8.
Kinectin was isolated and characterized from a fox testis cDNA library using a monoclonal antibody (FTA-1) raised against testis surface proteins. The cDNA sequence of 4,479 nucleotides encodes an ORF of 1,330 amino acids (aa) with high homology to mouse, human, and chicken kinectins (GenBank Accession Number AF095786). Southern analysis was used to show that genes homologous to kinectin are present in several mammal species and in at least one marsupial, but not in bacteria. Alternatively spliced forms of fox kinectin were identified, and one of these is uniquely expressed in brain and spleen tissues. Kinectin expression was highest in testis relative to other tissues examined. Sequence analysis and comparisons between species revealed that kinectin encodes multiple alpha-helical coiled coils predicted to form dimers, and is, therefore, likely to exist as a dimer. The results presented in this article suggest that kinectin is required for spermatogenesis, but is not a likely candidate for use in immunocontraceptive vaccines.  相似文献   

9.
We have isolated an expressible full-length cDNA clone encoding murine ERp99, an abundant, conserved transmembrane glycoprotein of the endoplasmic reticulum membrane. ERp99 is synthesized as a 92,475-kDa precursor containing 802 amino acids. It possesses a signal peptide of 21 amino acids which is cleaved cotranslationally. Analysis of the amino acid sequence deduced from the nucleotide sequence of the cDNA clone led us to propose a model for the orientation of ERp99 in the endoplasmic reticulum membrane. In this model, ERp99 possesses one membrane-spanning, stop transfer segment in the N-terminal region. The protein chain passes through the membrane only once, and approximately 75% of the protein remains on the cytoplasmic side of the ER membrane. Comparison of the ERp99 sequence to the sequence of other proteins revealed that ERp99 has extensive homology with the 90-kDa heat shock protein of Saccharomyces cerevisiae (hsp90) and the 83-kDa heat shock protein of Drosophila melanogaster. In addition, the N terminus of mature ERp99 is identical to that of the 94-kDa glucose regulated protein (GRP94) of mammalian cells.  相似文献   

10.
K Dai  Y Xu    J Lutkenhaus 《Journal of bacteriology》1996,178(5):1328-1334
Genetic and biochemical approaches were used to analyze a topological model for FtsN, a 36-kDa protein with a putative transmembrane segment near the N terminus, and to ascertain the requirements of the putative cytoplasmic and membrane-spanning domains for the function of this protein. Analysis of FtsN-PhoA fusions revealed that the putative transmembrane segment of FtsN could act as a translocation signal. Protease accessibility studies of FtsN in spheroblasts and inverted membrane vesicles confirmed that FtsN had a simple bitopic topology with a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large periplasmic carboxy terminus. To ascertain the functional requirements of the N-terminal segments of FtsN, various constructs were made. Deletion of the N-terminal cytoplasmic and membrane-spanning domains led to intracellular localization of the carboxy domain, instability,and loss of function. Replacement of the N-terminal cytoplasmic and membrane-spanning domains with a membrane-spanning domain from MalG restored subcellular localization and function. These N-terminal domains of FtsN could also be replaced by the cleavable MalE signal sequence with restoration of subcellular localization and function. It is concluded that the N-terminal, cytoplasmic, and transmembrane domains of FtsN are not required for function of the carboxy domain other than to transport it to the periplasm. FtsQ and FtsI were also analyzed.  相似文献   

11.
The critical role of microtubules in vectorial delivery of post-Golgi carrier vesicles to the apical cell surface has been established for various polarized epithelial cell types. In the present study we used secretory granules of the rat and chicken pancreas, termed zymogen granules, as model system for apically bound post-Golgi carrier vesicles that underlie the regulated exocytotic pathway. We found that targeting of zymogen granules to the apical cell surface requires an intact microtubule system which contains its colchicine-resistant organizing center and, thus, the microtubular minus ends close to the apical membrane domain. Purified zymogen granules and their membranes were found to be associated with cytoplasmic dynein intermediate and heavy chain and to contain the major components of the dynein activator complex, dynactin, i.e. p150Glued, p62, p50, Arp1, and beta-actin. Kinesin heavy chain and the kinesin receptor, 160 kD kinectin, were not detected as components of zymogen granules. Immunofluorescence staining showed a zymogen granule-like distribution for dynein and dynactin (p150Glued, p62, p50, Arpl) in the apical cytoplasm, whereas kinesin and kinectin were largely concentrated in the basal half of the cells in a pattern similar to the distribution of calreticulin, a component of the endoplasmic reticulum. Secretory granules of non-polarized chromaffin cells of the bovine adrenal medulla, that are assumed to underlie microtubular plus end targeting from the Golgi apparatus to the cell periphery, were not found to be associated with dynein or dynactin. To our knowledge, this is the first demonstration of major components of the dynein-dynactin complex associated with the membrane of a biochemically and functionally well-defined organelle which is considered to underlie a vectorial minus end-driven microtubular transport critically involved in precise delivery of digestive enzymes to the apically located acinar lumen.  相似文献   

12.
LAP1s (lamina-associated polypeptide 1s) are type 2 integral membrane proteins with a single membrane-spanning region of the inner nuclear membrane. We report here on the cloning of the full-length cDNA of human LAP1B (huLAP1B) that encodes 584 amino acids. The sequence homology between the predicted rat LAP1B and huLAP1B was found to be 73.6%. A topological analysis was carried out by transiently expressing N-terminal GFP fused deletion mutants of huLAP1B in cells. The transmembrane (TM) domain (aa 346-368) is required for the localization of the nuclear and endoplasmic reticulum membrane and that the TM domain and the C-terminal half of the nucleoplasmic domain (aa 190-331) are sufficient for the proper localization of LAP1B. In contrast, the well-conserved lumenal domain of the nuclear membrane is not required for its topological function. Biochemical analysis showed that huLAP1B is retained within the nucleus via interactions of the nucleoplasmic portion with nuclear components.  相似文献   

13.
The presence of myosin in dinoflagellates was tested using an anti-Acanthamoeba castellanii myosin II polyclonal antibody on the heterotrophic dinoflagellate Crypthecodinium cohnii Seligo. Western blots revealed the presence of a unique band of 80 kDa in total protein extracts and after immunoprecipitation. Expression of this 80 kDa protein appeared constant during the different phases of the cell cycle. In protein extracts from various other dinoflagellates, this 80 kDa protein was detected only in the autotrophic species Prorocentrum micans Ehr. Screening of a C. cohnii cDNA expression library with this antibody revealed a cDNA coding for an amino acid sequence without homology in the databases. However, particular regions were detected: - a polyglutamine repeat domain in the N-terminal part of the protein, - four peptide sequences associated with GTP-binding sites, - a sequence with slight homology to the rod tail of Caenorhabditis elegans myosin II, -a sequence with homology to a human kinesin motor domain. Immunocytolocalization performed on C. cohnii thin sections with a polyclonal antibody raised against the recombinant protein showed p80 to be present both within the nucleus and in the cytoplasm. Labelling was widespread in the nucleoplasm and more concentrated at the periphery of the permanently condensed chromosomes. In the cytoplasm, labelling appeared in a punctate region close to the nucleus and in the flagellum. Potential functions of this novel protein are discussed.  相似文献   

14.
15.
DNA supercoiling factor (SCF) was first identified in silkworm as a protein that generates negative supercoils in DNA in conjunction with eukaryotic topoisomerase II. To analyze the in vivo role of the factor, we cloned a cDNA encoding Drosophila melanogaster SCF. Northern analysis revealed 1.6- and 1.8-kb mRNAs throughout development. The longer mRNA contains an open reading frame that shares homology with mouse reticulocalbin whereas the shorter one encodes a truncated version lacking the N-terminal signal peptide-like sequence. An antibody against SCF detected a 45-kDa protein in the cytoplasmic fraction and a 30-kDa protein in the nuclear fraction of embryonic extracts. Immunoprecipitation suggests that the 30-kDa protein interacts with topoisomerase II in the nucleus, and hence that it is a functional form of SCF. Immunostaining of blastoderm embryos showed that SCF is present in nuclei during interphase but is excluded from mitotic chromosomes. In larvae, the antibody stained the nuclei of several tissues including a posterior part of the salivary gland. This latter staining was associated with natural or ecdysteroid-induced puffs on polytene chromosomes. Upon heat treatment of larvae, the staining on the endogenous puffs disappeared, and strong staining appeared on heat shock puffs. These results implicate SCF in gene expression.  相似文献   

16.
The conventional microtubule-dependent motor protein kinesin consists of heavy and light chains both of which have been documented to bind a variety of potential linker or cargo proteins. In this study we employed a yeast two-hybrid assay to identify additional binding partners of the kinesin heavy chain isoform KIF5B. A human brain cDNA library was screened with a bait corresponding to amino acid residues 814-963 of human KIF5B. This screen identified the ribosome receptor, p180, as a KIF5B-binding protein. The sites of interaction are residues 1294-1413 of p180 and the C-terminal half of the cargo binding-domain of KIF5B (residues 867-907). The KIF5B-binding site in p180 is homologous to the previously determined KIF5B-binding site in kinectin. The interacting regions of p180 and KIF5B consist almost entirely of heptad repeats, suggesting the interaction is a coiled-coil. A role for the kinesin/p180 interaction may include mRNA localization and/or transport of endoplasmic reticulum-derived vesicles.  相似文献   

17.
《The Journal of cell biology》1996,135(4):1027-1042
We have identified a protein named pinin that is associated with the mature desmosomes of the epithelia (Ouyang, P., and S.P. Sugrue. 1992. J. Cell Biol. 118:1477-1488). We suggest that the function of pinin is to pin intermediate filaments to the desmosome. Therefore, pinin may play a significant role in reinforcing the intermediate filament- desmosome complex. cDNA clones coding for pinin were identified, using degenerative oligonucleotide probes that were based on the internal amino acid sequence of pinin for the screening of a cDNA library. Immunoblotting of expressed recombinant proteins with the monoclonal 08L antibody localized the 08L epitope to the carboxyl end of the protein. Polyclonal antibodies directed against fusion proteins immunoidentified the 140-kD protein in tissue extracts. Immunofluorescence analysis, using the antifusion protein antibody, demonstrated pinin at lateral epithelial boundaries, which is consistent with desmosomal localization. The conceptual translation product of the cDNA clones contained three unique domains: (a) a serine- rich domain; (b) a glutamine-proline, glutamine-leucine repeat domain; and (c) an acidic domain rich in glutamic acid. Although the 3' end of the open reading frame of the clone for pinin showed near identity to a partial cDNA isolated for a pig neutrophil phosphoprotein (Bellavite, P., F. Bazzoni, et al. 1990. Biochem. Biophys. Res. Commun. 170:915- 922), the remaining sequence demonstrated little homology to known protein sequences. Northern blots of mRNA from chicken corneal epithelium, MDCK cells, and various human tissues indicated that pinin messages exhibit tissue-specific variation in size, ranging from 3.2 to 4.1 kb. Genomic Southern blots revealed the existence of one gene for pinin, suggesting alternative splicing of the mRNA. Expression of the full-length cDNA clones in human 293 cells and monkey COS-7 cells demonstrated that a 140-kD immunoreactive species on Western blots corresponded to pinin. Pinin cDNA transfected into the transformed 293 cells resulted in enhanced cell-cell adhesion. Immunofluorescence staining revealed that the expressed pinin protein was assembled to the lateral boundaries of the cells in contact, which is consistent with the staining pattern of pinin in epithelial cells.  相似文献   

18.
Kinectin-kinesin binding domains and their effects on organelle motility   总被引:5,自引:0,他引:5  
Intracellular organelle motility involves motor proteins that move along microtubules or actin filaments. One of these motor proteins, kinesin, was proposed to bind to kinectin on membrane organelles during movement. Whether kinectin is the kinesin receptor on organelles with a role in organelle motility has been controversial. We have characterized the sites of interaction between human kinectin and conventional kinesin using in vivo and in vitro assays. The kinectin-binding domain on the kinesin tail partially overlaps its head-binding domain and the myosin-Va binding domain. The kinesin-binding domain on kinectin resides near the COOH terminus and enhances the microtubule-stimulated kinesin-ATPase activity, and the overexpression of the kinectin-kinesin binding domains inhibited kinesin-dependent organelle motility in vivo. These data, when combined with other studies, suggest a role for kinectin in organelle motility.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号