首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
C A Grygon  T G Spiro 《Biochemistry》1989,28(10):4397-4402
Raman spectra are reported for distamycin, excited at 320 nm, in resonance with the first strong absorption band of the chromophore. Qualitative band assignments to pyrrole ring and amide modes are made on the basis of frequency shifts observed in D2O. When distamycin is dissolved in dimethyl sulfoxide or dimethylformamide, large (30 cm-1) upshifts are seen for the band assigned to amide I, while amides II and III shift down appreciably. Similar but smaller shifts are seen when distamycin is bound to poly(dA-dT) and poly(dA)-poly(dT). Examination of literature data for N-methylacetamide in various solvents shows that the amide I frequencies correlate well with solvent acceptor number but poorly with solvent donor number. This behavior implies that acceptor interactions with the C = O group are more important than donor interactions with the N-H group in polarizing the amide bond and stabilizing the zwitterionic resonance form. The resonance Raman spectra therefore imply that the distamycin C = O groups, despite being exposed to solvent, are less strongly H-bonded in the polynucleotide complexes than in aqueous distamycin, perhaps because of orienting influences of the nearby backbone phosphate groups. In this respect, the poly(dA-dT) and poly(dA)-poly(dT) complexes are the same, showing the same RR frequencies. Resonance Raman spectra were also obtained at 200-nm excitation, where modes of the DNA residues are enhanced. The spectra were essentially the same with and without distamycin, except for a perceptable narrowing of the adenine modes of poly(dA-dT), suggesting a reduction in conformational flexibility of the polymer upon drug binding.  相似文献   

2.
L-tyrosyl-L-tyrosine crystallizes as a dihydrate in the orthorhombic system, space group C222(1), with a = 12.105(2), b = 12.789(2), c = 24.492(3) A, Z = 8. The structure was solved by direct methods and refined to a final R-value of 0.059 for 1740 observed reflections. The molecule exists as a zwitterion, the peptide unit is trans planar, and the backbone torsion angles correspond to an extended conformation, with psi 1 = 149.4 degrees, phi 2 = -161.2 degrees, psi 2 = 158.3 degrees. The values of the side-chain torsion angles (chi 1, chi 2) are (-58.8 degrees, -63.1 degrees) for the first tyrosine and (-171.7 degrees, -116.5 degrees) for the second. The planes of the aromatic rings are nearly parallel (dihedral angle of 6.1 degrees), and their centers are separated by 10.9 A. The carboxyl plane forms a dihedral angle of 23.8 degrees with the plane of the peptide bond.  相似文献   

3.
The dipeptide, (DL)-alanyl-(DL)-norvaline, crystallizes in the monoclinic space group P2(1)/c, with a = 12.559(2)A, b = 5.265(1), c = 16.003(3), beta = 103.53(2) degrees, Z = 4. The structure was solved by direct methods and refined to an R-value of 0.054 for 871 reflections with I greater than 2 sigma. The molecule exists as a zwitterion in the crystal. The peptide unit is trans and shows significant deviations from planarity (delta omega = 12.4 degrees). The peptide backbone adopts an extended conformation. The unit cell contains D-Ala-L-norval and its enantiomer. The molecular conformation and packing features show a striking resemblance to those for D-Ala-L-Met (1), and leads to the speculation that norvaline might act as an analog of methionine.  相似文献   

4.
The structure of Z-Pro psi [CN4]-Ala-OBzl has been determined by X-ray crystallographic techniques. The structure crystallizes in space group P2(1) with cell constants a = 22.176(3) A, b = 6.141(1)A, c = 8.275(1) A, beta = 98.31(1), and Z = 2. The structure has been refined to a residual of 0.038 for 2538 independent data. The amide bond between the prolyl and alanyl residues is cis, a result of the presence of the tetrazole ring system, as is the urethane bond linking the benzyloxycarbonyl and the prolyl groups. A comparison of the structures in this study to other structures containing cis amide bonds shows that the tetrazole ring system, when incorporated into peptides, mimics a cis amide bond. Changes in the distance between the alpha-carbons adjacent to the tetrazole rings in the linear peptide as compared with the bicyclic diketopiperazine required a reassessment of the conformational mimicry with the cis amide bond.  相似文献   

5.
Poly-L -histidine (PLH) films at different degrees of protonation were produced mid subjected to infrared spectroscopic investigation (range 4000-650 cm?1). In addition, the N-deuterated film spectra were plotted. The amide II and III bands show that the peptide group is present in the trans form. The amide I and II bands show that at 0% and 50% protonation the PLH occurs as an α-helix and at 100% protonation as a random coil with some ranges in β structure. At 0% and 50% protonation, no hydration water is bound to the backbone. At 0% protonation all NH groups are linked to each other or to water molecules via hydrogen bonds. At 50% protonation NH+?N bonds form between the imidazole rings. These protons are present in continuous energy level distribution. Such bonds with tunneling protons are extremely polarizable and between these bonds may act proton dispersion forces. The Cl? ions are bonded to the NH groups of the imidazole groups. The hydration water is bonded to the Cl?? ions and to the NH groups. At 100% protonation, hydration water is bonded also to the CO groups of the backbone. The NH groups of the backbone, like those of the rings, endeavor especially in the dry state to bond to the Cl? ions. This leads to a strong steric constraint of the random coil.  相似文献   

6.
The crystal structure of a tripeptide, tryptophanyl-glycyl-glycine dihydrate (C15H18N4O4.2H2O, molecular weight = 354) has been determined. The crystals are orthorhombic, space group P2(1)2(1)2(1), with a = 7.875 (1) A, b = 9.009(1), c = 24.307(1) and Z = 4. The final R-index is 0.058 for 1488 reflections [sin theta)/lambda less than or equal to 0.6 A-1) with I greater than 2 sigma (I). The molecule exists as a zwitterion, with terminal NH3+ and COO- groups. The peptide units are trans and nearly perpendicular to the plane of the carboxyl group. The backbone torsion angles are: psi 1 = 132.7 degrees, omega 1 = 174.2 degrees, phi 2 = 88.2 degrees, psi 2 = 8.6 degrees, omega 2 = -179.8 degrees, phi 3 = -85.2 degrees, psi 31 = -178.1 degrees, psi 32 = 5.0 degrees. For the sidechain of tryptophan, chi 1 = -171.6 degrees, chi 2 = 101.0 degrees.  相似文献   

7.
HCO-Met-Leu-Ain-OMe (2), an analog of the chemotactic peptide HCO-Met-Leu-Phe-OH, containing the conformationally blocked residue of the 2-aminoindane-2-carboxylic acid (Ain) has been synthesized and its crystal and molecular conformation has been determined. Crystals of 2 are monoclinic, space group P2(1), with a = 15.059(7), b = 18.548(7), c = 9.600(4) A; beta = 85.04(3) degrees. The structure has been solved by direct methods and refined to R = 0.069 for 2813 independent reflections with I greater than 2.5 sigma (I). Two independent molecules A and B have been found in the asymmetric unit of the crystal of 2. Their conformation can be described as extended at the Met and Leu residues, but folded at the C-terminal Ain residue. The helical folding is left- and right-handed in the A and B molecule, respectively. The crystal packing is characterized by ribbons of intermolecular hydrogen bonded molecules extended along the c direction. The constrained analog 2 is highly active in the superoxide production, thus indicating that a stabilization of a helical folding at the C-terminal region of chemotactic tripeptides maintains the activity. The orientation of the aromatic ring, with respect to its adjacent backbone atoms, does not seem critical for the activity.  相似文献   

8.
-Methoxy-5-(2',3',4'-trimethoxyphenyl) tropone is an active analog of colchicine, a mitotic spindle inhibitor, which is missing the middle "B" ring. This compound crystallizes in the triclinic system, space group P1, with Z = 2; a = 10.135(2), b = 10.166 (4), and c = 7.863(2) A; alpha = 82.15(3), beta = 103.49(3), and gamma = 107.16(2); degrees and V = 750.7(4) A. The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.063, using 2503 observed reflections and 271 parameters. Despite the absence of the middle ring, the conformation of the molecule is similar to that of colchicine, isocolchicine , and their derivatives. The troponoid ring is dissimilar to the phenyl ring in that it is not aromatic and does have alternating short and long bond lengths. The dihedral angle between the least-squares planes of the two rings is -57.4 degrees. Van der Waals surface representations of the analog and colchicine are presented to demonstrate the similarity and differences of these two molecules . The structural information of the analog is consistent with the interpretation of thermodynamic parameters which govern the interactions between brain tubulin and the analog.  相似文献   

9.
Crystals of the dipeptide, pyroglutamyl-alanine (C8H12N2O4) grown from aqueous methanol are monoclinic, space group P2(1) with the following cell parameters: a = 4.863(2), b = 16.069(1), c = 6.534(2)A and beta = 109.9(2) degrees, V = 480.0A3, Mr = 200.2, Dc = 1.385 g cm-3, and Z = 2. The crystal structure was solved by the application of direct methods and refined to an R value of 0.044 for 699 reflections with I greater than 2 sigma. The amide of the pyroglutamyl side chain is cis, omega 1 = 2.6(7) degrees; the peptide unit is trans and appreciably non-planar (omega 2 = 167.4(5) degrees). The backbone torsional angles are: psi 1 = 166.1(5), phi 2 = -90.3(6), and psi 2 = -22.4(6) degrees. This structure contains a short (2.551(5)A) intermolecular hydrogen bond between the carboxyl OH and the N-acyl oxygen, a feature common to most acyl amino acids and acyl peptides.  相似文献   

10.
The crystal structure of the tripeptide t-Boc-L-Pro-D-Ala-D-Ala-NHCH3, monohydrate, (C17H30N4O5.H2O, molecular weight = 404.44) has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P2(1), a = 9.2585(4), b = 9.3541(5), c = 12.4529(4)A, beta = 96.449(3) degrees, Z = 2. The peptide units are in the trans and the tBoc-Pro bond in the cis orientation. The first and third peptide units show significant deviations from planarity (delta omega = 5.2 degrees and delta omega = 3.7 degrees, respectively). The backbone torsion angles are: phi 1 = -60 degrees, psi 1 = 143.3 degrees, omega 1 = -174.8 degrees, phi 2 = 148.4 degrees, psi 2 = -143.1 degrees, omega 2 = -179.7 degrees, phi 3 = 151.4 degrees, psi 3 = -151.9 degrees, omega 3 = -176.3 degrees. The pyrrolidine ring of the proline residue adopts the C2-C gamma conformation. The molecular packing gives rise to an antiparallel beta-sheet structure formed of dimeric repeating units of the peptide. The surface of the dimeric beta-sheet is hydrophobic. Water molecules are found systematically at the edges of the sheets interacting with the urethane oxygen and terminal amino groups. Surface catalysis of an L-Ala to D-Ala epimerization process by water molecules adsorbed on to an incipient beta-sheet is suggested as a mechanism whereby crystals of the title peptide were obtained from a solution of tBoc-Pro-D-Ala-Ala-NHCH3.  相似文献   

11.
A crystal and molecular structure for GTA I, the low temperature polymorph of (1----3)-alpha-D-glucan triacetate, is proposed on the basis of X-ray diffraction analysis of well-oriented films, combined with stereochemical model refinement. The unit cell is monoclinic with parameters a = 30.17 A, b = 17.42 A, c (fibre axis) = 12.11 A, and beta = 90 degrees C. The probable space group is P2(1) with b axis unique. Six molecular chains pass through the unit cell with alternating polarity and with three independent chains comprising the asymmetric unit. The chain axes are located in a hexagonal packing arrangement. The chain backbone conformation is a left-handed, three-fold helix, but all nine O(6) acetyl groups of the asymmetric unit are in non-equivalent rotational positions. The most probable structure is indicated by X-ray residuals R = 0.261 and R" = 0.283, based on 62 reflection intensities (41 observed and 21 unobserved).  相似文献   

12.
The crystal structure of t-Boc-glycyl-L-phenylalanine (C14H22N2O5, molecular weight = 298) has been determined. Crystals are monoclinic, space group P2(1), with a = 7.599(1) A, b = 9.576(2), c = 12.841(2), beta = 97.21(1) degrees, Z = 2, Dm = 1.149, Dc = 1.168 g X cm-3. Trial structure was obtained by direct methods and refined to a final R-index of 0.064 for 1465 reflections with I greater than 1 sigma. The peptide unit is trans planar and is nearly perpendicular to the plane containing the urethane moiety. The plane of the carboxyl group makes a dihedral angle of 16.0 degrees with the peptide unit. The backbone torsion angles are omega 0 = -176.9 degrees, phi 1 = -88.0 degrees, psi 1 = -14.5 degrees, omega 1 = 176.4 degrees, phi 2 = -164.7 degrees and psi 2 = 170.3 degrees. The phenylalanine side chain conformation is represented by the torsion angles chi 1 = 52.0 degrees, chi 2 = 85.8 degrees.  相似文献   

13.
The tripeptide, L-prolyl-glycyl-glycine, crystallizes in the trigonal space group P3(2), with a = b = 8.682(2) A, c = 12.008(2) and Z = 3. The structure was solved by direct methods and refined to an R-value of 0.07 for 727 reflections (I greater than 1.0 sigma). The molecule exists as a zwitterion in the crystal. The peptide units are trans and show significant deviations from planarity (omega 1 = 169.7 degrees, omega 2 = -170.1 degrees). The peptide backbone adopts a left-handed helical conformation similar to that of polyglycine II and polyproline II.  相似文献   

14.
Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA.Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA).poly(dT) regions. The pentapeptide binds 6-7-base-pair sites with a preference for poly(dA).poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A + T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A + T rich binding site.  相似文献   

15.
A pentapeptide, Boc-Leu-Ac8c-Ala-Leu-Ac8c-OMe 1, an octapeptide, Boc-Leu-Ac8c-Ala-Leu-Ac8c-Ala-Leu-Ac8c-OMe 2 and a tripeptide, Boc-Aib-Ac8c-Aib-OMe 3 containing the 1-aminocyclooctane-1-carboxylic acid residue (Ac8c) were synthesized and conformationally characterized by x-ray diffraction studies in the crystal state. Peptides 1 and 2 were also studied by NMR in CDC13 solution. Peptide 1 adopts a purely 3(10)-helical conformation in crystals, stabilized by three intramolecular 1 <-- 4 hydrogen bonds. Peptide 2 in crystals is largely 3(10)-helical with distortion in the backbone at the N-terminus by the insertion of a water molecule between Ac8c (2) CO and Ala (6) NH groups. Peptide 3 forms a C10-ring structure, i.e. a type III (III') beta- turn conformation stabilized by an intramolecular 1 <-- 4 hydrogen bond. Five cyclooctane rings assume boat-chair conformations, whereas the sixth [Ac8c(8) in 2] is appreciably distorted, resembling a chiral intermediate in the pseudorotational pathway from the boat-chair to the twisted boat-chair conformation. Internal bond angles of the cyclooctane rings are appreciably distorted from the tetrahedral value, a characteristic feature of the cyclooctane ring. Peptide 1 crystallized in the space group P212121 with a = 11.900(4) A, b = 18.728(6) A, c = 20.471(3) A and Z = 4. The final R1 and wR2 values are 0.0753 and 0.2107, respectively, for 3901 observed reflections [Fo > or = 3 sigma (Fo)]. Peptide 2 crystallized in space group P21 with a = 12.961(5) A, b = 17.710(10) A, c = 15.101(7) A, beta = 108.45(4) degrees and Z = 2. The final R1 and wR2 values are 0.0906 and 0.1832, respectively, for 2743 observed reflections [Fo > or = 3sigma (Fo)]. 1H-NMR studies on both the peptides strongly suggest the persistence of 3(10)-helical conformations in solution. Peptide 3 crystallized in the space group P21/n, with a = 10.018(1) A, b = 20.725(1) A, c = 12.915(1) A and Z = 4. The final R1 and wR2 values are 0.0411 and 0.1105, respectively, for 3634 observed reflections [Fo > or = 4sigma (Fo)].  相似文献   

16.
A key step in visual transduction is the light-induced conformational changes of rhodopsin that lead to binding and activation of the G-protein transducin. In order to explore the nature of these conformational changes, time-resolved Fourier transform infrared spectroscopy was used to measure the kinetics of hydrogen/deuterium exchange in rhodopsin upon photoexcitation. The extent of hydrogen/deuterium exchange of backbone peptide groups can be monitored by measuring the integrated intensity of the amide II and amide II' bands. When rhodopsin films are exposed to D2O in the dark for long periods, the amide II band retains at least 60% of its integrated intensity, reflecting a core of backbone peptide groups that are resistant to H/D exchange. Upon photoactivation, rhodopsin in the presence of D2O exhibits a new phase of H/D exchange which at 10 degrees C consists of fast (time constant approximately 30 min) and slow (approximately 11 h) components. These results indicate that photoactivation causes buried portions of the rhodopsin backbone structure to become more accessible.  相似文献   

17.
In order to study base pairing properties of the amide group in DNA duplexes, a nucleoside analog, 1-(2'-deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide, was synthesized by a new route from the ester, methyl 1-(2'-deoxy-3',5'-di-O-p -toluoyl-beta-D-erythro-pentofuranosyl)pyrrole-3-carboxylate, obtained from the coupling reaction between 1-chloro-2-deoxy-3,5-di-O -toluoyl-d-erythropentofuranose and methyl pyrrole-3-carboxylate by treatment with dimethylaluminum amide. 1-(2'-Deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide was incorporated into a series of oligodeoxyribonucleotides by solid-phase phosphoramidite technology. The corresponding oligodeoxyribonucleotides with 3-nitropyrrole in the same position in the sequence were synthesized for UV comparison of helix-coil transitions. The thermal melting studies indicate that pyrrole-3-carboxamide, which could conceptually adopt either a dA-like or a dI-like hydrogen bond conformation, pairs with significantly higher affinity to T than to dC. Pyrrole-3-carboxamide further resembles dA in the relative order of its base pairing preferences (T >dG >dA >dC). Theoretical calculations on the model compound N-methylpyrrole-3-carboxamide using density functional theory show little difference in the preference for a syntau versus anti conformation about the bond from pyrrole C3 to the amide carbonyl. The amide groups in both the minimized antitau and syntau conformations are twisted out of the plane of the pyrrole ring by 6-14 degrees. This twist may be one source of destabilization when the amide group is placed in the helix. Another contribution to the difference in stability between the base pairs of pyrrole-3-carboxamide with T and pyrrole-3-carboxamide with C may be the presence of a hydrogen bond in the former involving an acidic proton (N3-H of T).  相似文献   

18.
Crystals and a low resolution structure of interleukin-2   总被引:1,自引:0,他引:1  
Recombinant derived human interleukin-2 and an analog in which cysteine 125 has been replaced with alanine have been crystallized in a form suitable for x-ray diffraction. The crystals are triclinic, space group P1, with two protein molecules in the unit cell; unit cell parameters are a = 55.8 A, b = 40.1 A, c = 33.7 A, alpha = 90.0 degrees, beta = 109.3 degrees, gamma = 93.2 degrees. The interleukin-2 structure has been solved to 5.5 A resolution using heavy atom isomorphous replacement methods. The resultant low resolution model reveals a significant fraction of alpha helical secondary structure and outlines the overall tertiary structure of the molecule.  相似文献   

19.
Molecular structure of cyclic deoxydiadenylic acid at atomic resolution   总被引:7,自引:0,他引:7  
The molecular structure of a small cyclic nucleotide, cyclic deoxydiadenylic acid, has been determined by single-crystal X-ray diffraction analysis and refined to an R factor of 7.8% at 1.0-A resolution. The crystals are in the monoclinic space group C2 with unit cell dimensions of a = 24.511 (3) A, b = 24.785 (3) A, c = 13.743 (3) A, and beta = 94.02 (2) degrees. The structure was solved by the direct methods program SHELXS-86. There are 2 independent cyclic d(ApAp) molecules, 2 hydrated magnesium ions, and 26 water molecules in the asymmetric unit of the unit cell. The two cyclic d(ApAp) molecules have similar conformations within their 12-membered sugar-phosphate backbone ring, but they have quite different appearances due to the different glycosyl torsion angles that make one molecule more compact and the other extended and open. Three of the four deoxyribose rings are in the less common C3'-endo conformation. All four phosphate groups have their phosphodiester torsion angles alpha/zeta in the gauche(+)/gauche(+) conformation. One of the cyclic d(ApAp) molecules associates with another symmetry-related molecule to form a self-intercalated dimer that is a stable structure in solution, as observed in NMR studies. Many interesting intermolecular interactions, including base-base stacking, ribose-base stacking, base pairing, base-phosphate hydrogen bonding, and metal ion-phosphate interactions, are found in the crystal lattice. This structure may be relevant for understanding the conformational potentiality of an endogenous biological regulator of cellulose synthesis, cyclic (GpGp).  相似文献   

20.
N-acetyl-tauryl-L-phenylalanine methyl ester 1 has been synthesized. The crystal structure and molecular conformation of 1 have been determined. Crystals are monoclinic, space group P2(1) with a = 5.088(2), b = 17.112(17), c = 9.581(6) A, beta = 92.34(4) degrees, Z = 2. The structure has been solved by direct methods and refined to R = 0.043 for 2279 reflections with I greater than 1.5 sigma(I). The sulphonamide junction maintains the peptide backbone folded with Tau and Phe C alpha atoms in a cisoidal arrangement, the torsion angle around the S-N bond being 65.4 degrees. In this conformation the p-orbital of the sulphonamide nitrogen lies in the region of the plane bisecting the O-S-O angle, thus favouring d pi-p pi interactions between nitrogen and sulphur atoms. The S-N bond with a length of 1.618 A has significant pi-bond character. The CO-NH is planar and adopts trans conformation. The Tau residue is extended with the Tau-C1 alpha-Ca beta bond anti-periplanar to the S-N bond. The Phe side chain conformation corresponds to the statistically most favoured g- rotamer and exhibits a chi 1 torsion angle of -67.5 degrees. The packing is characterized by intermolecular H-bonds which the Tau and Phe NH groups form with the acetyl carbonyl and one of the two sulphonamide oxygens, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号