首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
运动功能是在神经系统直接或间接调控下协调完成的,基底神经节对于运动功能的执行起至关重要作用,其中纹状体在基底神经节处于中心地位,接受多巴胺能神经元的投射,通过直接、间接通路参与运动的调控。多巴胺能神经元中多巴胺的释放以活性区介导的快速突触传递的方式进行。活性区由Bassoon、RIM和ELKS三种支架蛋白组成,其中RIM蛋白对多巴胺释放起调节作用。纹状体不同类型的神经元电活动随着多巴胺释放含量的变化出现适应性变化。当纹状体去多巴胺支配时,中等多棘神经元和快放电中间神经元放电频率显著增加;当纹状体多巴胺耗竭时,大胆碱能中间神经元出现pause-rebound编码模式。本文对多巴胺运动控制的分子机制展开讨论,并对其在运动疲劳中枢机制中的研究进行综述,为纹状体神经元靶向干预提供理论依据和新思路。  相似文献   

2.
具有竞争指针的短时记忆神经网络模型   总被引:1,自引:0,他引:1  
在我们以前提出的短时记忆神经网络模型基础上[3],我们在新模型中引入突触竞争机制,提出了一个新的短时记忆神经网络模型。模型仍由两个神经网络所组成;其一为与长时记忆共有的信息内容表达网络,另一个为指针神经元环路。由于表达区神经元与指针神经元间的突触权重的竞争,使得模型可以表现出由干扰引起的短时记忆的遗忘。相应于自由回忆序列位置效应和汉字组块两个心理学实验,对模型做了计算机仿真。仿真结果显示模型的行为与两个心理实验定量地符合得很好。由此表明现在的模型更合适于作为短时记忆的模型。  相似文献   

3.
中等多棘神经元(medium spiny neurons,MSNs)是纹状体的主要投射神经元,其细胞膜上表达的不同类型多巴胺(dopamine,DA)受体,分别参与基底神经节直接与间接两条运动神经通路功能的调节。近年来发现,纹状体相邻MSNs之间还存在突触连接,这种突触结构对直接或间接通路的电活动产生侧抑制效应(lateral inhibition),并通过其前馈作用进一步调节基底神经节信息输出核团的兴奋性。因此,纹状体MSNs的侧抑制效应对运动的精确调节具有重要意义。本文拟从纹状体神经元构筑与侧抑制突触效应、纹状体MSNs侧抑制突触效应参与基底神经节调控的生理学机制、MSNs侧抑制效应异常与帕金森病(Parkinson's disease,PD)等方面对纹状体MSNs侧抑制效应与基底神经节功能调控的机制进行综述。  相似文献   

4.
多巴胺Ⅱ型受体在大脑基底神经节纹状体区域表达丰富,可反馈性调节突触前多巴胺合成并介导细胞信号转导。纹状体神经元突触可塑性受多巴胺Ⅱ型受体介导的cAMP/PKA和PLC信号通路调节,也是自主运动控制的神经基础。在运动性疲劳及以帕金森病为代表的运动功能障碍的中枢疾病中,多巴胺Ⅱ型受体通过平衡基底神经节直接通路和间接通路发挥重要作用。本文对多巴胺Ⅱ型受体在纹状体神经元突触可塑性和运动功能障碍中枢调控中的作用进行综述,为相关疾病的靶向干预和治疗提供理论基础。  相似文献   

5.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

6.
帕金森病(Parkinson's disease,PD)是一种老年神经系统退变性疾病,主要病理改变是中脑黑质致密部多巴胺能神经元渐进性变性死亡,从而引起基底神经节的功能失调。近年的研究显示,多巴胺能神经元的丢失并不是帕金森病发病的唯一因素,基底神经节中其它神经递质,包括谷氨酸、γ-氨基丁酸、乙酰胆碱等,在帕金森病的发病中也有重要的作用。在疾病发生发展过程中,神经递质的合成、分泌发生紊乱,基底神经节网络调控功能失调,导致了以运动系统症状为主的临床表现。本文就帕金森病状态下基底神经节中主要神经递质失衡的研究进展作一综述。  相似文献   

7.
初级运动皮层(primary motor cortex,M1),在精细运动执行中起非常重要的作用,同时在皮质-基底神经节-丘脑-皮质神经通路中也发挥重要的作用.本文结合当前研究进展,围绕M1区神经元构筑、突触投射及多巴胺受体分布及帕金森病(Parkinson's disease,PD)后神经元电生理学变化等方面阐述M1...  相似文献   

8.
额叶-基底神经节模型构成运动控制网络,其网络主要由额下回、辅助运动区、初级运动皮层、初级躯体感觉皮层及基底神经节亚区组成,是调节反应抑制能力的主要网络。目前,评测反应抑制能力的范式主要包括Go/No-Go与Stop-signal范式。多项研究发现,这两种实验范式在进行抑制任务时额叶及基底神经节亚区存在不同的激活,提示其抑制机制可能有所不同。其中,Go/No-Go任务是否由超直接通路调控抑制过程还有待探讨,Stop-signal任务则可能需要间接通路、超直接通路实现对抑制过程的调控。运动控制网络与感觉运动网络、默认模式网络之间的交互作用可能在治疗反应抑制缺陷与其他脑功能疾病中发挥调节作用。  相似文献   

9.
本文主要研究视网膜神经系统和七鳃鳗脊椎神经系统的电位发放特性和网络特性,首先利用抑制神经系统的Winner Less Competition(WLC)模型,分析视网膜和七鳃鳗脊椎神经系统的电位发放.得到视网膜神经元和脊椎神经元的电位发放模式.然后利用Watts-Strogatz小世界网络的特性,分析两个生物神经系统的群集系数和特征路长,说明这些生物系统神经元之间的信息传递具有小世界网络的特性.  相似文献   

10.
非突触信息传递方式   总被引:3,自引:0,他引:3  
原始神经元在形成突触和传导性轴突之前,是把神经活性物质释放到含有淋巴血液的半开放循环系统中。通过这种类结缔组织,神经活性物质作用于邻近的效应器官和组织细胞,发挥调节作用。高等脊椎动物,神经元通过突触结构或/和神经内分泌方式进行调节。近年来发现,神经元可在无突触结构的情况下,以酷似上述第一种方式发挥调节作用,有人称之为“非突触信息传递方式”,它与经典的突触调节相并列,成为神经系统正常调节机能的重要组成部分。  相似文献   

11.
In this paper we describe the characteristics, connections, resetting properties and organization of some identified interneurones in the flight system of the locust. The major conclusions are that: (1) the flight rhythm is generated at the interneuronal level and the flight oscillator is not continuously active (2) the interneurones in the flight pattern generator are distributed within at least 6 segmental ganglia (three thoracic and three fused abdominal ganglia) and are not organized into two homologous groups for the separate control of the forewing and the hindwing (3) this distribution of flight interneurones has no obvious functional significance but could be a consequence of flight having evolved from a segmentally distributed motor behaviour (4) there may be a functional hierarchy among flight interneurones such that premotor interneurones are separate from those generating the rhythm.  相似文献   

12.
Electrical stimulation of mechanosensory afferents innervating hairs on the surface of the exopodite in crayfish Procambarus clarkii (Girard) elicited reciprocal activation of the antagonistic set of uropod motor neurones. The closer motor neurones were excited while the opener motor neurones were inhibited. This reciprocal pattern of activity in the uropod motor neurones was also produced by bath application of acetylcholine (ACh) and the cholinergic agonist, carbamylcholine (carbachol). The closing pattern of activity in the uropod motor neurones produced by sensory stimulation was completely eliminated by bath application of the ACh blocker, d-tubocurarine, though the spontaneous activity of the motor neurones was not affected significantly. Bath application of the acetylcholinesterase inhibitor, neostigmine, increased the amplitude and extended the time course of excitatory postsynaptic potentials (EPSPs) of ascending interneurones elicited by sensory stimulation. These results strongly suggest that synaptic transmission from mechanosensory afferents innervating hairs on the surface of the tailfan is cholinergic.Bath application of the cholinergic antagonists, dtubocurarine (vertebrate nicotinic antagonist) and atropine (muscarinic antagonist) reversibly reduced the amplitude of EPSPs in many identified ascending and spiking local interneurones during sensory stimulation. Bath application of the cholinergic agonists, nicotine (nicotinic agonist) and oxotremorine (muscarinic agonist) also reduced EPSP amplitude. Nicotine caused a rapid depolarization of membrane potential with, in some cases, spikes in the interneurones. In the presence of nicotine, interneurones showed almost no response to the sensory stimulation, probably owing to desensitization of postsynaptic receptors. On the other hand, no remarkable changes in membrane potential of interneurones were observed after oxotremorine application. These results suggest that ACh released from the mechanosensory afferents depolarizes interneurones by acting on receptors similar to vertebrate nicotinic receptors.Abbreviations ACh cetylcholine - mns motor neurones - asc int ascending interneurone  相似文献   

13.
SYNOPSIS. The lamprey, a lower vertebrate, has recently becomea very useful model system for studying motor control, includingthe organization of neural networks, and for examining the relationbetween kinematic patterns and underlying neural mechanisms.This aquatic animal displays a number of interesting locomotorbehaviors, including flexure reflexes, forward locomotion, backwardlocomotion, turning, withdrawal, and equilibrium reflexes. Avaluable property of the lamprey preparation is that the nervoussystem survives under in vitro conditions for several days andgenerates well-coordinated locomotor activity that underliessome of the above behaviors. Thus, the neural control of basiclocomotor behaviors can be studied in an isolated nervous systemin which the ionic or pharmacological make-up of the bath canbe altered and in which stable conditions are provided for intracellularrecordings. In addition, recent data indicate that the lampreypreparation is a valuable model system for studies of axonalregeneration and recovery of locomotor function following spinalcord injury. This article will focus on three aspects of locomotorbehavior in the lamprey: kinematics and motor activity of locomotorbehaviors, descending control of locomotion, and regenerationof descending brainstem command pathways that initiate locomotion.  相似文献   

14.
It was established during experiments on pedal ganglia generating locomotor rhythm isolated fromClione limacina, a pteropod mollusk, that this rhythm was irregular in 30% of preparations; i.e., the locomotor generator worked in bursts which alternated with periods of regular activity. Locomotor bursts were produced by excitation in command neurons located within the pedal ganglia. Single neurons were extracted from the ganglia in these preparations generating locomotor bursts by means of an intracellular microelectrode; their somata were then placed in their original sites amongst the ganglia cells. A total of 35 neurons were isolated showing changed activity during bursts. Nine of these cells renewed their erratic activity (linked to locomotor bursts) following reinsertion into the ganglion. Neurons which had initially shown an excitatory pattern during bursts continued to be excited; the same was true for inhibitory types. These observations indicate that the command neurons governing generator operation can act on target cells when morphological contact with them has been suppressed.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow; M. V. Lomonosov State University. Moscow. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 756–763, November–December, 1986.  相似文献   

15.
It is crucial to determine the effects on the network level of a modulation of intrinsic membrane properties. The role calcium-dependent potassium channels, KCa, in the lamprey locomotor system has been investigated extensively. Earlier experimental studies have shown that apamin, which affects one type of KCa, increases the cycle duration of the locomotor network, due to effects on the burst termination. The effects of apamin were here larger when the network had a low level of activity (burst frequency 0.5 to 1 Hz) as compared to a higher rate (>2 Hz). By using a previously developed simulation model based on the lamprey locomotor network, we show that the model could account for the frequency dependence of the apamin modulation, if only the KCa conductance activated by Ca2+ entering during the action potential was altered and not the KCa conductance activated by Ca2+ entering through NMDA channels. The present simulation model of the spinal network in the lamprey can thus account for earlier experimental results with apamin on the network and cellular level that previously appeared enigmatic.  相似文献   

16.
It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.  相似文献   

17.
Spinally transected lamprey recovery locomotor function within 3-6 weeks, and recovery is due, in part, to functional regeneration of neural pathways in the central nervous system (CNS). Our data demonstrate for the first time in the lamprey that descending axons arising from brainstem command neurons can functionally regenerate and restore locomotor initiation below a healed spinal transection site. Immediately after behavioral recovery (3-6 weeks) the locomotor pattern was incomplete but returned to normal during the remainder of the recovery period (6-40 weeks). Initially, the extent of regeneration of descending axons was limited but increased to at least 30-50 mm at recovery times of 24-40 weeks. Regenerated giant Muller axons do not contribute significantly to recovery of locomotor function; rather, regenerated axons of smaller reticulospinal neurons appear to restore locomotor initiation. The restoration of locomotor coordination across a spinal lesion is dependent on two mechanisms: regeneration of spinal coordinating neurons and mechanosensory inputs. Comparisons are made to spinal cord regeneration in other lower vertebrates and to the relative lack of CNS regeneration and behavioral recovery in higher vertebrates.  相似文献   

18.
Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.  相似文献   

19.
A comparison of the vertebrate motor systems of the oldest group of now living vertebrates (lamprey) with that of mammals shows that there are striking similarities not only in the basic organization but also with regard to synaptic properties, transmitters and neuronal properties. The lamprey dorsal pallium (cortex) has a motor, a visual and a somatosensory area, and the basal ganglia, including the dopamine system, are organized in a virtually identical way in the lamprey and rodents. This also applies to the midbrain, brainstem and spinal cord. However, during evolution additional capabilities such as systems for the control of foreleg/arms, hands and fingers have evolved. The findings suggest that when the evolutionary lineages of mammals and lamprey became separate around 500 million years ago, the blueprint of the vertebrate motor system had already evolved.  相似文献   

20.
Locomotion in mammals is a complex motor act that involves the activation of a large number of muscles in a well-coordinated pattern. Understanding the network organization of the intrinsic spinal networks that control the locomotion, the central pattern generators, has been a challenge to neuroscientists. However, experiments using the isolated rodent spinal cord and combining electrophysiology and molecular genetics to dissect the locomotor network have started to shed new light on the network structure. In the present review, we will discuss findings that have revealed the role of designated populations of neurons for the key network functions including coordinating muscle activity and generating rhythmic activity. These findings are summarized in proposed organizational principles for the mammalian segmental CPG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号