首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
The title compounds were prepared via the acetylated 2-bromoethyl glycoside 11 of alpha-D-Gal-(1----4)-beta-D-Gal-(1----4)-beta-D-Glc by displacement of bromide ion with methyl 3- mercaptopropionate , octadecanethiol , and hydrogen, respectively. Silver triflate -promoted glycosylation of 2-bromoethyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside with 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -alpha -D-galactopyranosyl bromide gave 11. A tetradeuterated analogue of 11 was prepared by essentially the same route. The spacer-arm glycoside formed from methyl 3- mercaptopropionate was coupled to bovine serum albumin and keyhole limpet haemocyanin.  相似文献   

2.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

3.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

4.
Sequential tritylation, benzoylation, and detritylation of p-nitrophenyl beta-D-galactopyranoside gave p-nitrophenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (2). Reaction of 2 with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide gave p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (4) in 94% yield. Deprotection with sodium methoxide then gave the crystalline p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-beta-D-galactopyranoside (5). Condensation of 2 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (3) readily yielded the protected disaccharide p-nitrophenyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (6) from which the bromoacetyl groups could be selectively removed. Condensation of the resulting material with tetra-O-benzoyl-alpha-D-galactopyranosyl bromide then yielded p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-O-(2,3,4 -tri-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-2,3,4-tri-O-benzoyl-bet a-D -galactopyranoside, (8), which was converted into the crystalline trisaccharide p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-O-beta-D-galactopyranosyl)-(1----6) -beta -D-galactopyranoside (9) by treatment with sodium methoxide. Preliminary experiments on the interaction of p-(bromoacetamido)phenyl and p-isothiocyanatophenyl glycoside derivatives of some of these galacto-saccharides with monoclonal anti-(1----6)-beta-D-galactopyranan antibodies have been conducted.  相似文献   

5.
The tetrasaccharide a-D-Glcp-(1----4)-a-D-Xylp-(1----4)-a-D-Xylp-(1----4)-D- Glcp (1) has been synthesized, as a substrate analogue of alpha amylase, by silver perchlorate-catalyzed glycosylation of benzyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-a-D-xylopyranosyl)-beta-D- glucopyranoside (30) with 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D- glucopyranosyl)-a-D-xylopyranosyl chloride or by methyl triflate-promoted condensation of 30 with methyl 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl)-1-thio- beta-D-xylopyranoside, followed by removal of protecting groups of the resulting tetrasaccharide derivative 40.  相似文献   

6.
The substrate specificity of an endo-(1----4)-beta-D-xylanase of the yeast Cryptococcus albidus was investigated using a series of methyl beta-D-xylotriosides. In addition to (1----4) linkages, the enzyme could cleave (1----3) and (1----2) linkages adjacent to a (1----4) linkage and further from the non-reducing end of the substrate. The enzyme could hydrolyse a (1----3) linkage that attached a terminal xylopyranosyl group to a (1----4)-linked xylobiosyl moiety. The enzyme did not attack alpha-D-xylosidic linkages. The rate of cleavage of (1----4) linkages was much higher than those of other linkages at 0.5mM substrate, but the rates were comparable at 20mM substrate when transglycosylation reactions also occurred that facilitated degradation of the substrates.  相似文献   

7.
The "armed" methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside was reacted with "disarmed" phenyl O-(tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-6-O-benzyl-2- deoxy-2-phthalimido-1-thio-beta-D-glucopyranoside in the presence of CuBr2-Bu4NBr complex to give phenyl O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-O- [(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-(1----3])-6-O-benzyl-2-deoxy -2- phthalimido-1-thio-beta-D-glucopyranoside (6) as a novel glycosyl donor. The glycosylating capability of 6 was further examined using N-iodosuccinimide-triflic acid as a reagent. This led to the synthesis of a tetrasaccharide and a pentasaccharide incorporating the X-antigenic structure represented by 6.  相似文献   

8.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

9.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

10.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

11.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

12.
4-Methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranoside (22), a building block for the alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap fragment of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----X)-D- RibOH-(5-P----]n (6A, X = 3; 6B, X = 4) has been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside was coupled with 4-methoxybenzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside in ether, using methyl triflate as promoter. The resulting alpha-D-Glcp-(1----3)-alpha-L-Rhap derivative was deallylated with KOBut in N,N-dimethylformamide followed by 0.1M HCl in 9:1 acetone-water. The product was coupled with 3,4,6-tri-O-acetyl-2-O-allyl-alpha,beta-D-galactopyranosyl trichloroacetimidate in ether, using trimethylsilyl triflate, to yield 19. Deacetylation, benzylation, and deallylation then gave 22.  相似文献   

13.
p-Nitrophenyl 2-O-benzyl-4,5-O-cyclohexylidene-beta-D-mannopyranoside (4) was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide. The resulting, protected disaccharide was converted into p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-4-O-benzoyl-2-O- benzyl-beta-D-mannopyranoside (8), which was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide to give p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-O -[2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1----6)]-4-O-benzoyl-2-O -benzyl-beta-D-mannopyranoside (9) in 75% yield. Conversion of the p-nitrophenyl group followed by deprotection then yielded the title compound, whose structure was confirmed by 1H- and 13C-n.m.r. spectroscopy.  相似文献   

14.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

15.
Incubation of honeybee (Apis mellifica) venom-gland extracts with GDP-[14C]fucose and GlcNAc beta 1----2Man alpha 1----6(GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc beta 1----N-Asn-peptide(NAc) gave a labeled product in 40% yield. Analysis by 500-MHz 1H-NMR spectroscopy indicated the transferred fucose-(Fuc) residue to be alpha 1----3-linked to the Asn-bound GlcNAc. Further proof was provided by one-dimensional and two-dimensional 1H-NMR analysis of the incubation mixture, after incubation with beta-N-acetylhexosaminidase. The established carbohydrate structure (formula; see text) proves the existence of a novel alpha 1----3-fucosyltransferase with the ability to effect difucosylation of the Asn-bound GlcNAc in N-glycans.  相似文献   

16.
Partial reactions catalyzed by a (1----3)-N-acetyl-beta-D- glucosaminyltransferase (EC2.4.1.149), known to be present in human serum, were studied by use of biantennary "backbone" saccharides of oligo-N-acetyllactosamine-type as acceptors. Incubation of the radiolabeled blood-group I-active hexasaccharide, beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-Galp- (1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Galp-(1----4)-D-GlcNAc (1) and UDP-GlcNAc with serum gave first a transient 1:1 mixture of two isomeric heptasaccharides, beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D- GlcpNAc-(1----3)-[beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D- Galp-(1----4)-D-GlcNAc (2) and beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-GlcpNAc-(1----3)- beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Galp-(1----4)-D-Glc NAc (3), showing that both branches of 1 react equally well. The two heptasaccharides reacted further in the incubation mixture to form the radiolabeled octasaccharide, beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[be ta-D- GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Ga lp- (1----4)-D-GlcNAc (4); during this second reaction, the composition of the heptasaccharide mixture remained unchanged, indicating that 2 and 3 reacted at approximately equal rates. The heptasaccharides 2 and 3 could not be separated from each other, but they could be detected, identified, and quantitatively determined by stepwise enzymic degradations. Partial (1----3)-N-acetyl-beta-D-glucosaminylation reactions, carried out with another acceptor, the branched pentasaccharide, beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-Galp-(1----4)-beta- D- GlcpNAc-(1----6)]-beta-D-Gal (11), revealed that it reacted also equally well at both branches.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Incubation of the trisaccharide acceptor, beta-D-GlcpNAc-(1----2)-alpha-D-Manp-(1----6)-beta-D-Manp-O( CH2)8CO2Me with sonicates of Rous sarcoma-transformed baby-hamster kidney cells, which contain N-acetylglucosaminyltransferase V activity, resulted in the production of beta-D-GlcpNAc-(1----2)-[beta-D-GlcpNAc-(1----6)]-alpha-D-Manp-(1- ---6)- beta-D-Manp-O(CH2)8CO2Me (4). The product of the enzymic reaction was identified by comparison of its 1H-n.m.r. spectrum with that of authentic 4 whose chemical synthesis is also described.  相似文献   

18.
The synthesis of disaccharide repeating units, D-GlcA-(beta 1----3)-L-Rha (fragment A) and L-Rha-(alpha 1----3)-D-GlcA (fragment B), of the K54-antigenic polysaccharide from uropathogenic Escherichia coli 06:K54:H10 is described. Essential stages of the synthesis of fragment A involved the glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside followed by acetolysis of the methyl bioside obtained and further transformation into 2-(benzyloxycarbonylamino)ethyl glycoside; deprotection and, finally, conversion into 2-(acrylamido)ethyl glycoside. Selective opening of lactone ring in 2-azidoethyl 2,4-di-O-acetyl-beta-D-glucopyranoside-6,3-lactone was used for deprotection of 3-OH group in the synthesis of fragment B. Rhamnosylation of the glucuronic acid derivative thus obtained followed by transformation into 2-(acrylamido)ethyl glycoside and deprotection gave fragment B. Both fragments A and B were converted into artificial antigens of copolymer type.  相似文献   

19.
The capsular polysaccharide of Streptococcus pneumoniae serotype 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----4)- D-RibOH-(5-P----]n was depolymerised under alkaline (NaOH) and acidic (HF) conditions. The former treatment yielded, as the major component, alpha-2-P-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-5- P-RibOH. The latter treatment at -16 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH-(5-P----2)- alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH and at 4 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH. These oligosaccharides were characterised by sugar analysis, f.a.b.-m.s., and 1H- and 13C-n.m.r. spectroscopy.  相似文献   

20.
Bromoacetylation of methyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (1) followed by cleavage of the methoxyl group from the resulting 6-O-bromoacetyl derivative 2 with 1,1-dichloromethyl methyl ether gave 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl chloride (3). Reaction of 3 with 1, promoted by silver trifluoromethanesulfonate, afforded methyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (12), bearing at O-6 of its non-reducing end-group the selectively removable bromoacetyl group. This was O-debromoacetylated and the disaccharide nucleophile 15 formed was again treated with 3, to give the analogous trisaccharide 18. This sequence of reactions was repeated to afford the analogous tetrasaccharide 20, showing the feasibility of stepwise construction of the title oligosaccharides. Similar reactions of 3 with 1,2,3,4-tetra-O-benzoyl-alpha- (7) and beta-D-galactopyranose (5) gave, respectively, O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -1,2,3,4-tetra-O-benzoyl-alpha- (14) and beta-D-galactopyranose (13). These could be separately converted into the same glycosyl halide, namely, alpha-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1-- --6)-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl chloride (16), by cleavage with 1,1-dichloromethyl methyl ether. The chloride 16 was treated with tri- and tetra-saccharide nucleophiles analogous to 15 to give, respectively, the corresponding pentasaccharide 23 and the hexasaccharide 25, demonstrating the possibility of the blockwise construction of higher beta-(1----6)-linked D-galacto-oligosaccharides. The disaccharide 12 was also obtained by the reaction of 1,2,3,4-tetra-O-benzoyl-6-O-bromoacetyl-beta-D-galactopryanose (6) with 1 in the presence of trimethylsilyl trifluoromethane-sulfonate. Similarly, the trisaccharide 18 and the tetrasaccharide 20 were obtained by the treatment of 13, respectively, with 1 and 15, showing that, as with their 1-O-acetyl counterparts, beta-1-benzoates of saccharides bearing at O-2 a group capable of neighboring-group participation can act under these conditions as glycosyl donors. Crystalline methyl beta-glycosides of (1----6)-beta-D-galacto-tetraose (22), -pentaose (24) and -hexaose (27) have been obtained for the first time, by deacylation (Zemplén) of their fully protected precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号