首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rabbit articular chondrocytes were treated with retinoic acid (RA) to eliminate the differentiated phenotype marked by the synthesis of type II collagen and high levels of proteoglycan. Exposure of such cells to transforming growth factor-β1 (TGF-β1) in secondary culture under serum-free and RA-free, defined conditions led to reexpression of the differentiated phenotype. The microfilament modifying drug, dihydrocytochalasin B (DHCB), enhanced the effectiveness of TGF-β1 and produced a threefold stimulation of type II collagen reexpression (measured by 2-D CNBr peptide mapping) at 0.3 ng/ml TGF-β1 without altering total collagen synthesis. Type II collagen reexpression was maximal from 1 to 5 ng/ml TGF-β1, with or without DHCB. The effect of DHCB on proteoglycan synthesis was maximal at 1 ng/ml TGF-β1. At this dose TGF-β alone produced no increase in 35 SO4 incorporation, while simultaneous treatment with DHCB caused a sevenfold stimulation of proteoglycan synthesis. DHCB-independent stimulation of proteoglycan reexpression occurred between 5 and 15 ng/ml TGF-β1. In contrast, TGF-β1-dependent stimulation of proteoglycan synthesis in differentiated chondrocytes in primary monolayer culture was not substantially affected by DHCB. The collagen data suggest that TGF-β1 utilizes separate pathways to control phenotypic change and collagen (matrix) synthesis. Microfilament modification by DHCB selectively enhances the effectiveness of the TGF-β1-dependent signaling pathway that controls reexpression of the differentiated phenotype.  相似文献   

2.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 microM), and dihydrocytochalasin B (3, 10, 20 microM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid-treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15-20-fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 microM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two-dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two-dimensional gel electrophoresis along the study.  相似文献   

3.
4.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 μM), and dihydrocytochalasin B (3, 10, 20 μM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid‐treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15–20‐fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 μM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two‐dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two‐dimensional gel electrophoresis along the study. J. Cell. Biochem. 76:84–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
We studied the effect of low-density lipoproteins (LDL) on the synthesis and secretion of proteoglycans by cultured human umbilical-vein endothelial cells. Confluent cultures were incubated with [35S]sulphate or [3H]glucosamine in lipoprotein-deficient serum in the presence and in the absence (control) of LDL (100-400 micrograms/ml), and metabolically labelled proteoglycans in culture medium and cell layer were analysed. LDL increased accumulation of labelled proteoglycans in medium and cell fractions up to a concentration of 200 micrograms/ml. At this concentration of LDL the accumulations of proteoglycans in medium and cell layer were 65% and 32% respectively above control for 35S-labelled proteoglycans, and 55% and 28% respectively above control for 3H-labelled proteoglycans. At concentrations above this LDL was found to depress the accumulation of proteoglycans in medium and cell layer. Gel filtration on Sepharose CL-4B showed that in both control and LDL-treated cultures the cell layer contained a large (Kav. = 0) and a small (Kav. = 0.35) heparan sulphate proteoglycan, whereas the culture medium contained a large heparan sulphate proteoglycan (Kav. = 0) and a smaller isomeric chondroitin sulphate proteoglycan (control, Kav. = 0.35; LDL-treated, Kav. = 0.17). The relative increase in hydrodynamic size of the isomeric chondroitin sulphate proteoglycan (Mr 150,000 compared with 90,000) in the medium of cultures exposed to LDL was partly attributable to the larger size of the glycosaminoglycan side chains (Mr 39,000 compared with 21,000). The isomeric chondroitin sulphate proteoglycan in LDL-treated culture was relatively enriched in chondroitin 6-sulphate compared with that in control cultures (39% compared with 29%). Pulse-chase studies showed that LDL treatment did not alter the turnover rate of proteoglycans as compared with controls, implying that the elevation in proteoglycan accumulation in LDL-treated cultures was due to enhanced synthesis. These results demonstrate that LDL can modulate proteoglycan synthesis by cultured vascular endothelial cells, resulting in the secretion of a larger isomeric chondroitin sulphate proteoglycan enriched in chondroitin 6-sulphate.  相似文献   

6.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

7.
8.
The ability of cell shape to modulate proteoglycan synthesis in tendon fibroblasts was investigated by placing freshly isolated tendon fibroblasts and chondrocytes into primary culture either as adherent cells on a polystyrene substratum or as rounded cells in alginate beads. Chondrocytes and cells from the compressed region of adult tendon synthesized predominantly large proteoglycan when maintained either as dense monolayers, where actin stress fibers in the cytoskeleton were prominent, or in alginate beads, where actin fibers could not be detected. After three rounds of proliferation as elongated adherent cells the synthesis of large proteoglycan was greatly reduced, i.e. the chondrocytic cells underwent 'dedifferentiation'. Cells from the tensional region of adult tendon synthesized predominantly small proteoglycan when in primary culture as a monolayer, after proliferation on a flat substratum, or as round cells in alginate beads. Fibroblasts from the tensional region of newborn tendon showed no tendency toward increased synthesis of large proteoglycan when maintained as round cells in alginate beads for 7 weeks. In tendon there appears to be a mechanically induced developmental transition from fibroblastic to chondrocytic cells. However, neither the change to a rounded cell shape nor the lack of organized cytoskeletal actin fibers was sufficient to induce chondrocyte-like proteoglycan synthesis in differentiated tendon fibroblasts in culture.  相似文献   

9.
Genetically engineered kanamycin-resistant Escherichia coli HB101 containing the mutant chimeric plasmid pAW6194-T17 specifying biphenyl dioxygenase and dihydrodiol dehydrogenase and lacking the ability to produce active 3-phenylcatechol dioxygenase was used to produce 1,2-dihydroxy-4'-chlorobiphenyl (DHCB) from 4-chlorobiphenyl. Resting-cell suspensions of genetically engineered E. coli in mineral salts medium (pH 7.0) containing 880 microM 4-chlorobiphenyl produced 110 microM DHCB. The Km for 4-chlorobiphenyl was 3.3 mM. Biotransformation of DHCB from 4-chlorobiphenyl was maximum when cells (2.5 mg of protein per ml) were incubated with shaking (150 rpm) at pH 7.0 and 30 degrees C for 6 h. The enzymatically produced DHCB was a suitable substrate for assaying 3-phenylcatechol dioxygenase activity. Biologically produced DHCB showed UV and mass spectra similar to those of chemically synthesized DHCB. The bioconversion rate of ortho-substituted chlorobiphenyl was slower than that of the para- or meta-substituted chlorobiphenyl.  相似文献   

10.
Genetically engineered kanamycin-resistant Escherichia coli HB101 containing the mutant chimeric plasmid pAW6194-T17 specifying biphenyl dioxygenase and dihydrodiol dehydrogenase and lacking the ability to produce active 3-phenylcatechol dioxygenase was used to produce 1,2-dihydroxy-4'-chlorobiphenyl (DHCB) from 4-chlorobiphenyl. Resting-cell suspensions of genetically engineered E. coli in mineral salts medium (pH 7.0) containing 880 microM 4-chlorobiphenyl produced 110 microM DHCB. The Km for 4-chlorobiphenyl was 3.3 mM. Biotransformation of DHCB from 4-chlorobiphenyl was maximum when cells (2.5 mg of protein per ml) were incubated with shaking (150 rpm) at pH 7.0 and 30 degrees C for 6 h. The enzymatically produced DHCB was a suitable substrate for assaying 3-phenylcatechol dioxygenase activity. Biologically produced DHCB showed UV and mass spectra similar to those of chemically synthesized DHCB. The bioconversion rate of ortho-substituted chlorobiphenyl was slower than that of the para- or meta-substituted chlorobiphenyl.  相似文献   

11.
Quiescent cultured Nakano mouse lens cells incubated for 40 hours with sodium orthovanadate incorporated 3H-thymidine at an accelerated rate; the greatest response occurred at 20 microM vanadate, whereas by 2 microM an incorporation rate equivalent to unstimulated cells was noted. Microscopic examination of the cells revealed that those exposed to concentrations of vanadate greater than 100 microM had lysed by the end of the 40-hour incubation. Reduction in vanadate exposure time to 1 hour caused the cells to incorporate the greatest amount of 3H-thymidine at a vanadate concentration of 200 microM to 500 microM. Half-maximum incorporation of 3H-thymidine (after a 40-hour incubation) was induced by a 2-hour incubation with 20 microM vanadate. Studies with insulin showed that while 20 ng/ml insulin alone did not increase 3H-thymidine incorporation, 20 ng/ml insulin in combination with 20 microM vanadate resulted in a significant increase in 3H-thymidine uptake over cells exposed to only vanadate. Insulin alone will increase cell number and insulin with vanadate are synergistic in the stimulation of DNA synthesis, but the two together show no further increase in cell number over that produced by insulin alone. Thus, vanadate can increase progression from G1/G0 to S-phase, but cannot stimulate cells to divide. Studies designed to detect DNA damage and repair rather than S-phase DNA synthesis demonstrated that vanadate was not causing increased 3H-thymidine uptake by damaging DNA. Cell counts revealed that vanadate, while able to induce DNA synthesis, does not induce mitosis. Autoradiography and equilibrium sedimentation experiments demonstrated that gene amplification was not occurring. A known vanadate exchange inhibitor blocked the ability of vanadate to increase 3H-thymidine incorporation which is consistent with the idea that cellular internalization of vanadate is required for this effect to be seen. 86Rb+ uptake experiments demonstrate that the vanadate concentration inducing 50% inhibition of (Na+, K+)ATPase is nearly two orders of magnitude more concentrated that vanadate concentrations shown capable of inducing 3H-thymidine uptake. This strongly suggests that (Na+, K+)ATPase inhibition is not the central mechanism by which DNA synthesis is stimulated by vanadate.  相似文献   

12.
When F9 teratocarcinoma cells are treated with retinoic acid plus cyclic AMP (RACF9) they differentiate into parietal endoderm. Differentiation is accompanied by the acquisition of substrate adhesion sites and a change in the pattern of gene expression, including the synthesis of tissue-type plasminogen activator (tPA). We demonstrate here that dihydrocytochalasin B (DHCB) treatment of differentiating F9 cells prevents the assembly of a structured actin cytoskeleton and generates a more rounded and stellate cell morphology. This morphological change is accompanied by the accumulation of the usually visceral endoderm-specific marker urokinase-type plasminogen activator (uPA) and an increase in tPA levels in comparison to untreated RACF9 controls. The increase in tPA accumulation is preceded by an increase in tPA mRNA levels. These effects are reversible, with a lag, when DHCB is removed, and PA accumulation can be stimulated within 24 h when differentiated cells are exposed to DHCB. Exposure to the microtubule disrupting agent colchicine has no effect on uPA or tPA accumulation. In addition, antibody directed against the beta 1 integrin subunit can also specifically elicit increased PA production. Thus disturbing the cytoskeleton and cytoskeleton associated substrate adhesions promotes PA accumulation.  相似文献   

13.
Cartilage-derived growth factors, enhance proteoglycan synthesis in cultured chick-embryo chondrocytes, and have almost no effect on cell proliferation. Addition of cartilage derived growth factors to cartilage cells loaded with the fluorescent Ca2+ indicator quin 2, caused a rapid, concentration dependent decrease in cytoplasmic free Ca2+. This decrease persisted also in Ca2+-free medium, indicating that it is not mediated by a decrease in the passive permeability of cell membrane to Ca2+. Addition of the Ca2+ ionophore A23187, with or without cartilage derived factors, caused an increase in cytoplasmic free Ca2+ together with inhibition of proteoglycan synthesis and enhanced cell proliferation. The results may indicate that whereas cell proliferation in chondrocytes is signaled by an increase in cytoplasmic Ca2+ ([Ca2+]in), proteoglycan synthesis is signaled by a decrease in [Ca2+]in. The data lead to suggesting a mechanism for antagonistic regulation of cell proliferation and the expression of the differentiated state.  相似文献   

14.
The effects of transforming growth factor-beta (TGF-beta) on the synthesis of cartilage-matrix proteoglycan by cultured rabbit chondrocytes were examined. Rabbit chondrocytes were seeded at low density and exposed to a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with 0.5% fetal bovine serum, 1% bovine serum albumin, 50 micrograms/ml ascorbic acid, and 2 x 10(-7) M hydrocortisone (Medium A). Various combinations of TGF-beta, insulin-like growth factor-I (IGF-I), and fibroblast growth factor (FGF) were also added to Medium A, and the chondrocytes were grown to confluency. Chondrocytes grown with TGF-beta or FGF alone became flat or fibroblastic, those grown with FGF and TGF-beta became very elongated and formed distinct foci, and those grown with FGF and IGF-I showed the spherical configuration characteristic of overtly differentiated chondrocytes. Nevertheless, the incorporation of 3H with glucosamine into the large, chondroitin sulfate proteoglycan synthesized by cultures with FGF and TGF-beta was similar to that in cells grown with FGF and IGF-I and five times that in cells cultured with FGF alone. The increases in incorporation of 3H reflected real increases in proteoglycan synthesis, because chemical analyses showed an increase in the accumulation of macromolecules containing uronic acid in cultures with FGF and TGF-beta or with FGF and IGF-I. However, FGF in combination with either TGF-beta or IGF-I had little effect on the incorporation of 3H into small proteoglycans or hyaluronic acid. These results indicate that chondrocytes morphologically transformed with TGF-beta and FGF fully express the differentiated proteoglycan phenotype rather than the transformed glycosaminoglycan phenotype.  相似文献   

15.
Proteoglycans synthesized in cultured mast cells derived from horse serum-immunized lymph node cells were analyzed. Treatment of the 35S-proteoglycans extracted from these cells with either chondroitinase ABC or AC resulted in 95% +/- 7% and 84% +/- 7%, respectively (mean +/- S.E., n = 3), of the radioactivity associated with disaccharides eluting in the included volume of PD-10. The 35S-proteoglycans were not hydrolyzed by nitrous acid elimination treatment. The chondroitinase ABC-generated disaccharides were analyzed by aminocyano high performance liquid chromatography. 35S-Disaccharides eluted in a major peak at a retention time of 8.1 min, corresponding to the disaccharide of chondroitin 4-sulfate proteoglycan (delta Di-4S), and a second peak at 12 min, corresponding to the disaccharide of chondroitin sulfate D proteoglycan (delta Di-diSD). Further treatment with chondro-4-sulfatase did not affect the retention time of the disaccharide corresponding to delta Di-diSD whereas this peak disappeared after the digested proteoglycan was treated either by chondro-6-sulfatase or by both sulfatases. Therefore, this disaccharide was identified as chondroitin sulfate D. Quantification of the radiolabeled disaccharides showed that delta Di-diSD contributed 20% +/- 2% (n = 3) of the total sulfated disaccharides of the chondroitin sulfate of these cultured cells. The role of fibroblasts in inducing the shift of chondroitin sulfate D into heparin proteoglycan in these mast cells was also investigated by using three types of monolayers: mouse embryonic skin fibroblasts (MESF), rat embryonic skin fibroblasts (RESF), and 3T3 fibroblasts. 35S-Proteoglycans that were extracted from the lymph node-derived mast cells cultured for 30 days on MESF and on 3T3 fibroblast monolayers were 93% +/- 4% and 30% +/- 7% (n = 3) susceptible to nitrous acid elimination, respectively. No degradation by nitrous acid was observed in 35S-proteoglycans extracted from cells cultured on RESF monolayer. Since the MESF was found to be the most potent monolayer in the induction of heparin synthesis, the kinetics of changes in the synthesis of proteoglycan types were determined in lymph node-derived mast cells cultured on MESF for up to 30 days. It was found that the synthesis of chondroitin sulfate gradually declined whereas that of heparin starting between 4 and 7 days after plating gradually increased. From the 17th day on, only the synthesis of heparin was detected.  相似文献   

16.
We examined the effect of hypoxia and high glucose (HG) on ANG II type 1 (AT(1)) receptor expression and proliferation in cultured vascular smooth muscle (VSM) cells. Exposure of quiescent cells to hypoxia in a serum-free DME-Ham's F-12 medium for 6-24 h induced a progressive increase in AT(1) mRNA expression. Exposure of cells to 24 h of hypoxia also resulted in a significant increase in ANG II receptor binding as assessed with (125)I-labeled ANG II. Treatment with ANG II (1 microM) for 24 h under normoxic conditions caused an approximately 1.5-fold increase in both DNA synthesis and cell number, which was enhanced to approximately 3.0-fold under hypoxic conditions. An AT(1) receptor antagonist (losartan, 10 microM) blocked the ANG II-induced increase in DNA synthesis under both normoxic and hypoxic conditions. Incubations in HG medium (25 mM) for 12-24 h under normoxic conditions induced an approximately 2.5-fold increase in AT(1) mRNA levels, which was markedly enhanced by hypoxia to approximately 5.5-fold at 12 h and approximately 8.5-fold at 24 h. ANG II under HG-normoxic conditions caused a complete downregulation of AT(1) expression, which was prevented by hypoxia. These results demonstrate an upregulation of AT(1) receptor expression by hypoxia and HG in cultured VSM cells and suggest a mechanism for enhanced ANG II-induced VSM cell proliferation and the development of atherosclerosis in diabetes.  相似文献   

17.
The present study examined the effects of high doses of vanadate on glycosaminoglycan (GAG) synthesis and tyrosine phosphorylation in rabbit chondrocytes in confluent cultures. Although 6 microM vanadate increased the incorporation of [3H]glucosamine into chondroitin sulfate proteoglycans twofold, 40-60 microM vanadate suppressed this incorporation fourfold. Although 6 microM vanadate had little effect on [3H]glucosamine incorporation into hyaluronate, 40-60 microM vanadate increased this incorporation threefold. Chemical analyses confirmed that the increase in [3H]glucosamine incorporation into hyaluronate and the decrease in the incorporation into chondroitin sulfate proteoglycan correlated with increased hyaluronate content and decreased chondroitin sulfate content in the cell layers of vanadate-transformed cells. Chondrocytes exposed to 40-60 microM vanadate became typically transformed spindlelike cells. Furthermore, vanadate, at 6 and 60 microM, increased the overall level of phosphotyrosine by 8- and 31-fold, respectively, and 60 microM vanadate enhanced phosphorylation of many phosphotyrosine-containing proteins. These observations suggest that vanadate induces transformation-associated changes in the pattern of GAG synthesis when it induces excess phosphorylation on tyrosine in chondrocyte proteins.  相似文献   

18.
Rat serosal heparin-containing mast cells (HP-MC) were maintained in vitro for as long as 30 days when co-cultured with mouse skin-derived 3T3 fibroblasts. In contrast, when the mast cells were cultured alone, on fibronectin-, gelatin-, or dermal-collagen-coated dishes, on acid and heat-killed fibroblasts in the presence or absence of 24 hr fibroblast-conditioned medium, or on a monolayer of mouse serosal macrophages, they failed to adhere to the dishes, released significant amounts of their histamine and lactate dehydrogenase, and stained with trypan blue, indicating a loss of viability. The rat serosal HP-MC cultured with the 3T3 fibroblasts became so adherent to the fibroblasts that the two cell types could be separated from one another only by trypsinization. The cultured HP-MC stained with both alcian blue and safranin and continued to synthesize proteoglycan at a rate comparable to that of freshly isolated cells. The 35S-labeled proteoglycan synthesized by these cultured cells, like that produced by freshly isolated rat serosal HP-MC, was a 750,000 to 1,000,000 m.w. proteoglycan containing only heparin glycosaminoglycans of 50,000 to 100,000 m.w. When HP-MC were cultured for 1 wk with the fibroblasts and were then incubated for 5 min with a 1/20 dilution of rabbit anti-rat IgE, they generated and released an average of 22 +/- 10 ng (mean +/- SD, n = 5) of prostaglandin D2 per 10(6) cells and exocytosed a higher net percentage of their total histamine content (44 +/- 11% [mean +/- SD, n = 8]) than did cells just isolated from the animal (6 +/- 4% [mean +/- SD, n = 4]). As assessed by electron microscopy, many of the cultured HP-MC resembled freshly isolated cells except that some secretory granules had fused with one another in some cells. Morphologically, after activation the cultured HP-MC underwent compound exocytosis like freshly isolated cells. These results demonstrate that the in vivo differentiated rat HP-MC maintain their histology, morphology, immunologic responsiveness, histamine content, and ability to synthesize heparin proteoglycan when co-cultured with living fibroblasts.  相似文献   

19.
20.
In our recent studies, we have demonstrated that monolayer cultures of bovine aortic endothelial (BAE) cells that do not express type I collagen also fail to express and synthesize decorin, a small chondroitin/dermatan sulfate proteoglycan that interacts with type I collagen and regulates collagen fibrillogenesis in vitro. However, BAE cells exhibiting a spontaneous sprouting phenotype and a predisposition toward the formation of cords and tube-like structures (an in vitro model for angiogenesis) initiate the synthesis of type I collagen during their morphological transition from a polygonal monolayer to an angiogenic phenotype. In the present study, we examined whether BAE cells also initiate the synthesis of the proteoglycan decorin during this morphological transition. We show by Northern blot analysis and by immunochemical methods that BAE cell cultures containing sprouting cells and cords, but not monolayer cultures of these cells, express and synthesize decorin (M(r) approximately 100,000). We also show that type I collagen expression by BAE cell cultures is initiated concomitantly. However, the localization of decorin and type I collagen in cord and tube-forming BAE cell cultures is not completely identical. Type I collagen is detected only in sprouting BAE cells and in endothelial cords, whereas decorin is also apparent in BAE cells surrounding the cords and tubes. Our results indicate that the synthesis of decorin as well as type I collagen is associated with endothelial cord and tube formation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号