首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An ammonia-sensing air gap microelectrode has been designed on the basis of a neutral carrier pH-sensing inner electrode. This electrode has a tip diameter of 2 to 5 microns, has a simple design, is easy to fabricate, and has a long shelf life. Its response to ammonium is linear in the range 3 x 10(-5) to 10(-2) M and its response time (95%) is 10 to 15 s. The electrode was converted to a microsensor for urea by immobilization of urease within its tip. The linear response to urea ranged from 3 x 10(-4) to 10(-2) M and the response time was 15 to 20 s.  相似文献   

2.
By utilizing the recently developed glass-membrane pH microelectrode an improved pCO2 microelectrode has been manufactured. The new pCO2 microelectrode described here has been made with tip diameters ranging from 2 to 200 μm. In addition, the sensitivity (slope) was nearly theoretical, 56 to 60 mV/log pCO2, the response time was 1–3 min, and the intercept stability (drift) was less than 3 mV/20-min time interval. Finally, the lifetime of this electrode was several days to a week when stored correctly. The most unique quality of this pCO2 microelectrode was that the eperatienal characteristics, tip diameter, sensitivity, and response time, could be controlled by adhering to predetermined design considerations.  相似文献   

3.
Through the use of a glass-membrane pH electrode and a water-tight seal a modified Thomas pH microelectrode has been developed. The modified Thomas electrode has a relatively low electrical resistance (10(11) omega), a small sensing chamber (10 microns3), and a rapid response time (10 s) and can be manufactured in both single- and double-barreled configurations. The modified Thomas electrode is designed to measure the intracellular pH of small cells such as those found in the mammalian kidney tubule.  相似文献   

4.
The manufacture, calibration, and signal conditioning during construction of an iridium/iridium oxide pH microsensor is described. The microsensor was designed to be used extracellularly, primarily in biofilm research. The sensing tip diameters were typically in the range of 3-15 mum. The iridium oxide was formed by potential cycling in dilute sulfuric acid. A pH profule across a denitrifying biofilm was measured as an example of an application. The higher Nernstian slope (70-80 mV/pH for fresh electrodes), increased rigidity, and restriction of the sensing tip to the outermost end of the electrode are features which make the iridium/iridium oxide pH microelectrode superior to a glass microelectrode. (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
This paper describes the development of a novel sonochemically fabricated microelectrode based acetylcholinesterase and polyaniline carbon/cobalt phthalocyanine biosensor for the ultra-sensitive determination of pesticides. Arrays of this type are fabricated using microelectrode templates with population densities of 2 x 10(5) cm(-2). The enzymatic response of the sensors is inhibited upon incubation with the pesticide and in this report it is shown that paraoxon may be determined down to concentrations of 1 x 10(-17) M. This sensitivity has thus far not been achieved and mechanisms accounting for the enhancement of the sensitivity reported here are discussed.  相似文献   

6.
The glass-membrane pH microelectrode (GMpHME) described previously (Anal. Biochem.73, 501, 1976) had a limitation in the minimum size (tip diameter) that could be manufactured (about 1 μm). In addition, when made at this small size the electrical resistance was usually high (1011 Ω) and the response time long (greater than 5 min). The inability to manufacture the GMpHME with tip diameters less than 1 μm was primarily due to the thickness of the pH glass used to form the H+-sensitive membrane. In this report we detail a method for thinning the pH glass in such a way that the manufacture of submicrometer glass-membrane pH microelectrodes is possible. These submicrometer pH electrodes have rapid response times (1 to 3 min) and maintain the desirable characteristics of all GMpHMEs, that is, near theoretic slope and a well-defined sensing surface area.  相似文献   

7.
By miniaturizing the original MacInnes and Dole glass-membrane pH electrode a new pH microelectrode has been developed. The technique developed utilizes the tip of a high electrical resistance glass pipet that can be sealed with a thin membrane of H+-sensitive glass. Single-barreled electrodes have been made with tip diameters ranging from 1.5 to 100 μm and double-barreled electrodes with tip diameters from 2 to 28 μm. The glass-membrane pH microelectrode provided a means for sensing the pH of biological solutions with an electrode having theoretical slope and tip configurational control. The most unique characteristics of the electrode were: the pH sensing surface was quite small, the tip diameter could be controlled, and the problem of electrode insulation was eliminated.  相似文献   

8.
A novel concentric design of double-barrelled Ca2+-selective microelectrode, with an inner pipette tip that protrudes beyond an outer one, has recently been developed and is described. This configuration of pipettes was produced from concentric capillaries in one step using a horizontal pipette puller. For the tip of the inner barrel to protrude, Corning 1724 aluminosilicate glass was selected, as it has a higher melting point than the 1723 glass which is used for the outer barrel. To reduce electrode resistance the inner capillary was best made with a triangular shape. It was preferentially silanized in a dry box by injection of methyltrichlorosilane into only the inner barrel. The Ca2+ neutral carrier-based liquid membrane (ETH 1001) was back-filled from the tip to the shank of the inner pipette and above this CaCl2 solution was added. KCl, which contained EGTA and was buffered to pCa 7, was used to fill the reference barrel. These Ca2+ electrodes showed linear response with slope approximately equal to 30 mV for changes in Ca2+ concentration between 10(-3) and 10(-7) M in the presence of constant [K+]. They offer a number of advantages including a low noise level achieved by the presence of the external concentric KCl electrode, and a simple mechanical structure that allows applications to a variety of small cells.  相似文献   

9.
A novel and patented procedure is described for the sonochemical fabrication of a new class of microelectrode array based sensor with electrode element populations of up to 2 x 10(5) cm(-2). For some years it has been accepted that microelectrode arrays offer an attractive route for lowering minimum limits of detection and imparting stir (convectional mass transport) independence to sensor responses; despite this no commercial biosensors, to date, have employed microelectrode arrays, largely due to the cost of conventional fabrication routes that have not proved commercially viable for disposable devices. Biosensors formed by our sonochemical approach offer unrivalled sensitivity and impart stir independence to sensor responses. This format lends itself for mass fabrication due to the simplicity and inexpensiveness of the approach; in the first instance impedimetric and amperometric sensors are reported for glucose as model systems. Sensors already developed for ethanol, oxalate and a number of pesticide determinations will be reported in subsequent publications.  相似文献   

10.
Plant control of rhizosphere pH is important for nutrient mobilization and uptake, and also affects microbial activity and pathogens in the vicinity of the root. Limited information is available on the ability of plant species and genotypes within a species to induce pH changes in the rhizosphere. A growth chamber study was conducted to characterize patterns of pH change within the rhizosphere of selected genotypes in an alkaline environment with a balanced nutrient supply. After germination in incubators, seedlings of 32 genotypes of maize (Zea mays L.), soybean (Glycine max. L.), sorghum (Sorghum bicolor L.), sordan [sorghum (Sorghum bicolor L.), sudangrass (Sorghum sudanese L.) hybrid], wheat (Triticum aestivum L.), oats (Avena sativa L.), and barley (Hordeum vulgare L.) were transferred into aseptic agar medium (pH 7.6) with bromocresol purple indicator. Ability of the embedded roots to induce rhizosphere pH change was followed by photographing the color change of the bromocresol purple indicator. The pH for selected genotypes at different root zones (maturation, elongation, meristematic) was also monitored by a microelectrode at 1-, 2-, 3- and 4-mm distances from the root surface. Rhizosphere acidification for selected genotypes within a species were in the order: soybean, Hawkeye>PI-54169; maize, Pioneer-3737>Pioneer-3732>CM-37; sordan, S-757>S-333; sorghum, SC-33-8-9EYSC-118-15E; barley, Bowman>Primus II; oats, Hytest>SD-84104. The pH patterns within the root system varied from species to species. The highest amount of acidification was found at the elongation and meristematic zones for soybean, while the highest amount of acidification was found at the maturation zone for barley under the same experimental conditions. The agar method allowed the determination of a genotype's capability to induce rhizosphere pH changes while the microelectrode method is necessary for quantifying the spatial variation of specific root developmental zones with high resolution.This work is a part of H.T. Gollany's dissertation in partial fulfillment of the requirements for the PhD degree.  相似文献   

11.
Design of ionophores for ion-selective microsensors   总被引:1,自引:0,他引:1  
Requirements for a reliable use of liquid membrane microelectrodes are discussed in terms of stability, response time, and lifetime on the basis of membrane technological considerations. The selectivity of H+, Li+, Na+, K+, Mg2+, Ca2+, and Cl- microelectrodes is critically evaluated using the Nikolskii-Eisenman formalism. Recent progress in the design of new ionophores is presented. A novel neutral carrier-based Ca2+-selective microelectrode with a detection limit of about 5 X 10(-10) M Ca2+ at a background of 125 mM K+ has been realized. An neutral carrier-based microelectrode for H+ with extended pH range of the sample solution is now available. Promising developments in the field of Li+-, Mg2+-, and Cl--selective ionophores are discussed.  相似文献   

12.
A novel enzyme-linked DNA hybridization assay on an interdigitated array (IDA) microelectrode integrated into a microfluidic channel is demonstrated with sub-nM detection limit. To improve the detection limit as compared to conventional electrochemical biosensors, a recyclable redox product, 4-aminophenol (PAP) is used with an IDA microelectrode. The IDA has a modest and easily fabricated inter-digit spacing of 10 μm, yet we were able to demonstrate 97% recycling efficiency of PAP due to the integration in a microfluidic channel. With a 70 nL sample volume, the characterized detection limit for PAP of 1.0 × 10?1? M is achieved, with a linear dynamic range that extends from 1.0 × 10?? to 1.0 × 10?? M. This detection limit, which is the lowest reported detection limit for PAP, is due to the increased sensitivity provided by the sample confinement in the microfluidic channel, as well as the increased repeatability due to perfectly static flow in the microchannel and an additional anti-fouling step in the protocol. DNA sequence detection is achieved through a hybridization sandwich of an immobilized complementary probe, the target DNA sequence, and a second complementary probe labeled with β-galactosidase (β-GAL); the β-GAL converts its substrate, 4-aminophenyl-d-galactopyranoside (PAPG), into PAP. In this report we present the lowest reported observed detection limit (1.0 × 10?1? M) for an enzyme-linked DNA hybridization assay using an IDA microelectrode and a redox signaling paradigm. Thus, we have demonstrated highly sensitive detection of a targeted DNA sequence using a low-cost easily fabricated electrochemical biosensor integrated into a microfluidic channel.  相似文献   

13.
A polymer-modified sonochemically fabricated glucose oxidase microelectrode array with microelectrode population densities of up to 2.5 x 10(5) microelectrodes per square centimetres is reported. These microelectrode sensors were formed by first depositing an insulating film on commercial screen printed electrodes which was subsequently sonicated to form cavities of regular sizes in the film. Electropolymerisation of aniline at the microelectrode cavities formed polyaniline protrusions containing entrapped glucose oxidase. Chemical deposition of polysiloxane from dichlorodimethysilane was used to deposit a thin protective and diffusion mass transport controlling coating over the electrodes. The physical and electrochemical properties of these films were studied. The performance of the final glucose oxidase based microelectrode sensor array is reported.  相似文献   

14.
Voltage clamping with a single microelectrode.   总被引:6,自引:0,他引:6  
A technique is described which allows neurons to be voltage clamped with a single microelectrode, and the advantages of this circuit with respect to conventional bridge techniques are discussed. In this circuit, the single microelectrode is rapidly switched from a current passing to a recording mode. The circuitry consists of: (1) an electronic switch; (2) a high impedance, ultralow input capacity amplifier; (3) a sample-and-hold module; (4) conventional voltage clamping circuitry. The closed electronic switch allows current to flow through the electrode. The switch then opens, and the electrode is in a recording mode. The low input capacity of the preamplifier allows the artifact from the current pulse to rapidly abate, after which time the circuit samples the membrane potential. This cycle is repeated at rates up to 10 kHz. The voltage clamping amplifier senses the output of the sample-and-hold module and adjusts the current pulse amplitude to maintain the desired membrane potential. The system was evaluated in Aplysia neurons by inserting two microelectrodes into a cell. One electrode was used to clamp the cell and the other to independently monitor membrane potential at a remote location in the soma.  相似文献   

15.
The high background K+ concentration in plant cells is a problem for intracellular measurements of Na+ using ion-selective microelectrodes. The discrimination between Na+ and K+ of the microelectrode ionophore molecule limits the usefulness of this technique. A new Na+-selective microelectrode with an ionophore incorporating a tetramethoxyethyl ester derivative of p-t-butyl calix[4]arene has been developed. Microelectrodes made with this new sensor have superior selectivity for Na+ over K+ resulting in a lower limit of detection when compared with microelectrodes made using a commercially available ionophore (ETH227). Both types of microelectrodes were insensitive to changes in ionic strength and physiological ranges of pH, but only the calixarene-based electrodes showed no protein interference. To test the suitability of the calixarene-based microelectrodes for measurements in plants, they were used to measure Na+ in epidermal cells in the zone 10-20 mm from the root apex of barley (Hordeum vulgare L.). Seedlings were grown in a nutrient solution containing 200 mM NaCl for 1-6 d. The range of intracellular Na+ activity (a(Na)) measured varied from < or =0.1 mM (limit of detection) to over 100 mM, and these values increased significantly with time. The membrane potential (E(m)) of these cells was variable, but the values became significantly more negative with time, although there was no significant correlation between E(m) and a(Na). These intracellular measurements could not be separated into distinct populations that might be representative of subcellular compartments.  相似文献   

16.
Poly(ethylene glycol) diglycidyl ether (PEGDE) is widely used as an additive for cross-linking polymers bearing amine, hydroxyl, or carboxyl groups. However, the idea of using PEGDE alone for immobilizing proteins on biosensors has never been thoroughly explored. We report the successful fabrication of microelectrode biosensors based on glucose oxidase, d-amino acid oxidase, and glutamate oxidase immobilized using PEGDE. We found that biosensors made with PEGDE exhibited high sensitivity and a response time on the order of seconds, which is sufficient for observing biological processes in vivo. The enzymatic activity on these biosensors was highly stable over several months when they were stored at 4 °C, and over at least 3d at 37 °C. Glucose microelectrode biosensors implanted in the central nervous system of anesthetized rats reliably monitored changes in brain glucose levels induced by sequential administration of insulin and glucose. PEGDE provides a simple, low cost, non-toxic alternative for the preparation of in vivo microelectrode biosensors.  相似文献   

17.
Microsensors are valuable tools to monitor cell metabolism in cell culture volumes. The present research describes the fabrication and characterization of on-chip thin-film iridium oxide pH microsensors with dimensions of 20 microm x 20 microm and 20 microm x 40 microm suitable to be incorporated into nl volumes. IrOx thin films were formed on platinum microelectrodes by electrochemical deposition in galvanostatic mode. Anodically grown iridium oxide films showed a near super-Nernstian response with a slope of -77.6+/-2 mV/pH at 22 degrees C, and linear responses within the pH range of 4-11. Freshly deposited electrodes showed response times as low as 6s. Long-term studies showed a baseline drift of 2-3 mV/month, which could easily be compensated by calibration. This work demonstrated for the first time the use of planar IrOx pH microelectrodes to measure the acidification rate of CHO and fibroblast cells in an on chip cell culture volume of 25 nl with microfluidic control.  相似文献   

18.
Signal degradation and an array size dictated by the number of available interconnects are the two main limitations inherent to standalone microelectrode arrays (MEAs). A new biochip consisting of an array of microelectrodes with fully-integrated analog and digital circuitry realized in an industrial CMOS process addresses these issues. The device is capable of on-chip signal filtering for improved signal-to-noise ratio (SNR), on-chip analog and digital conversion, and multiplexing, thereby facilitating simultaneous stimulation and recording of electrogenic cell activity. The designed electrode pitch of 250 microm significantly limits the space available for circuitry: a repeated unit of circuitry associated with each electrode comprises a stimulation buffer and a bandpass filter for readout. The bandpass filter has corner frequencies of 100 Hz and 50 kHz, and a gain of 1000. Stimulation voltages are generated from an 8-bit digital signal and converted to an analog signal at a frequency of 120 kHz. Functionality of the read-out circuitry is demonstrated by the measurement of cardiomyocyte activity. The microelectrode is realized in a shifted design for flexibility and biocompatibility. Several microelectrode materials (platinum, platinum black and titanium nitride) have been electrically characterized. An equivalent circuit model, where each parameter represents a macroscopic physical quantity contributing to the interface impedance, has been successfully fitted to experimental results.  相似文献   

19.
A high density microelectrode array biosensor was developed for the detection of Escherichia coli O157:H7. The biosensor was fabricated from (100) silicon with a 2 microm layer of thermal oxide as an insulating layer, an active area of 9.6 mm2 and consists of an interdigitated gold electrode array. The sensor surface was functionalised for bacterial detection using heterobifunctional crosslinkers and immobilised polyclonal antibodies to create a biological sensing surface. Bacteria suspended in solution became attached to the immobilised antibodies when the biosensor was tested in liquid samples. The change in impedance caused by the bacteria was measured over a frequency range of 100 Hz-10 M Hz. The biosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The biosensor was able to discriminate between cellular concentrations of 10(4)-10(7)CFU/mL and has applications in detecting pathogens in food samples.  相似文献   

20.
A H+-selective liquid membrane microelectrode was prepared and used to measure the pH profile evolution during colonization of gel beads immobilizing Lactobacillus helveticus in a whey permeate medium. A large pH gradient was observed in a highly active periferal layer thickness that decreased from 500 to 300 m for an immobilized cell population that increased from 5.8 × 109 to 3.1 × 1010 CFU/g. The flat pH profile (pH 4.4) in the central part of the bead was attributed to a high concentration of the inhibitory undissociated form of lactic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号