首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of trisomy on meiotic chromosome association and synapsis was studied in oocytes of two trisomy 21 fetuses. The patterns of association of the three chromosomes 21 were determined by analysis of late zygotene to early diplotene fetal oocytes after immunofluorescent staining of synaptonemal complexes. The identity of chromosome 21 was confirmed using FISH with either a whole chromosome 21 paint or an alpha-satellite DNA repeat probe. In both fetuses, a wide variety of configurations was present at pachytene. The most common configurations were a trivalent (35.5% and 51.6% of analyzable cells) and a bivalent plus univalent (62.9% and 45.2%). These different frequencies between the fetuses were not significant. Trivalents showed either triple synapsis or double synapsis with pairing-partner switches. The extent of triple synapsis varied from a short segment, either terminal or interstitial, to the whole chromosome length. Through use of immunofluorescent staining of the centromeres, we identified novel types of abnormal chromosome behavior in trisomy 21 fetal oocytes. Thus, we found that 6/41 trivalents had one of the chromosomes associated "out of register," i.e., in a nonhomologous fashion, with its two homologs. Likewise, we found three cells with bivalent plus univalent configurations, in which the univalent showed self-synapsis. The presence of three copies of chromosome 21 therefore results not only in the formation of complex and highly variable synaptic associations but also causes a significant increase in the occurrence of nonhomologous synapsis in human fetal oocytes.  相似文献   

2.
Meiotic prophase in the spermatocytes ofPanorpa communis was studied. There is a proper sequence of meiotic stages in the testes. Therefore the temporal development of chromosome structure and the synaptonemal complex (SC) could be studied exactly. The structure and function of the SC are interpreted in a new model.—The chromosomes have a lambrush form from leptotene to diakinesis. At leptotene each chromatid produces an additional axis of basic protein and RNA. The axis becomes one of the lateral elements of the SC. At pachytene the DNA of the bivalents is separated into three regions: 1. Most of the DNA forms long loops outside the SC. 2. Smaller portions of the DNA filaments are twisted around the lateral elements of the SC. 3. Short DNA loops (called pairing loops) extend into the pairing space. InPanorpa the SC is composed of two lateral elements (chromosome axes), which are connected by equally spaced transverse filaments, a ladder-like central element in the middle of the pairing space and, on each side of the pairing space parallel to the lateral elements, two RNA containing strands. These are regarded as connected RNA copies of the pairing loops and are responsible for the exact pairing of homologous chromosome segments. At diplotene the axes of the sister chromatids separate to form “double complexes” with four lateral elements. The double complexes of the oocytes contain only transverse filaments between the axes of the homologous chromatids. After a short time they disappear again and the homologues separate to form the chiasmatic bivalents. In the spermatocytes all four chromatid axes are connected by transverse filaments. The pairing complex persists until diakinesis, thereby causing the suppression of the diplotene stage in the light microscope. This may be the only reason for the achiasmatic meiosis in the spermatocytes ofPanorpa.  相似文献   

3.
The progression of first meiotic prophase and synaptonemal complex (SC) formation in female rats, Rattus norvegicus S.D., is described through the analysis of the different stages of the first meiotic prophase, and confirms the high synchrony of the process in this species. Leptotene is a stage of very short duration and since pairing of the homologues begins very early, only a leptotene-zygotene stage can be distinguished. The progression of pairing during zygotene is asynchronous. The morphology of the SCs is similar to that described in other species. During diplotene and before desintegration of the lateral elements, desynapsis takes place.In some oocytes a double or even multiple nature of lateral elements was seen. Associations between SCs and nucleoli or nucleolar filaments are frequent. The presence of fragmented SCs can be interpreted as a technical artifact.  相似文献   

4.
M Bojko 《Génome》1988,30(5):697-709
Synaptonemal complex abnormalities are frequent in reconstructed meiotic prophase nuclei of Neurospora crassa and Neurospora intermedia. Three kinds of synaptonemal complex anomalies were seen: lateral component splits, lateral component junctions, and multiple complexes. The anomalies apparently are formed during or after the pairing process, as they were not seen in the largely unpaired early zygotene chromosomes. Their presence at all the other substages from mid-zygotene to late pachytene indicates that they are not eliminated before the synaptonemal complex decomposes at diplotene. Abnormal synaptonemal complexes were seen in all 19 crosses of N. crassa and N. intermedia that were examined, including matings between standard laboratory strains, inversions, Spore killers, and strains collected from nature. The frequency of affected nuclei and degree of abnormality within a nucleus varied in different matings. No abnormalities were present in the homothallic species Neurospora africana and Neurospora terricola. Structural chromosome aberrations, introgression, and heterozygosity have been eliminated as causes for pairing disorder. The abnormal synaptonemal complexes seemingly do not interfere with normal ascus development and ascospore formation. The affected nuclei are not aborted during meiotic prophase, nor are they eliminated by abortion of mature asci. The abnormal meiocytes do not lead to aneuploidy, as judged by the low frequency of white ascospores in crosses between wild type strains that have many abnormalities. Thus, the abnormal synatonemal complexes do not appear to prevent chiasma formation between homologues.  相似文献   

5.
Polycomplexes are described for the first time in spermatocytes of a cirripede crustacean, Pollicipes polymerus Sowerby. Synaptonemal complexes of regular tripartite construction are seen from zygotene to mid-pachytene. Although some of the synaptonemal complexes are disrupted at late pachytene and may degenerate at this stage, some persist and by diplotene may form polycomplexes by the bending and self-fusion of their lateral elements. These polycomplexes are still encompassed by chromosomes and consist of four dense plates and intercalated central elements and transverse fibers. Other polycomplexes with five or six dense plates, all of which are considerably wider than lateral elements of mid-pachytene synaptonemal complexes, are also seen in diplotene nuclei. These may be attached to a chromosome at only one end or may be in the nucleoplasm, free of chromosomal involvement except for fine fibrous connectives. No polycomplexes are seen in meiotic cells after diplotene and their fate is unknown. It is suggested that poly-complexes serve as sequestra for synaptonemal material which could prevent normal chromosomal disjunction.  相似文献   

6.
Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of centromere pairing and, by doing so, improve the segregation fidelity of mammalian meiotic chromosomes.  相似文献   

7.
Rat oocytes in the meiotic prophase are studied by means of classical techniques of electron microscopy, preferential staining methods for DNA and RNA and specific enzymatic hydrolysis. The axial cores in leptotene and the lateral arms in the pachytene synaptonemal complex are composed by fibrils that keep a positive contrast after the application of the ethylenediaminetetraacetic acid staining method. They disappear with RNAse treatment, which reveals the presence of chromatin fibrils in the zone occupied by the cores. Preferential staining for DNA corroborates this evidence. Medial arm and lateral-medial fibrils are formed by ribonucleoproteic filaments that form bridges between pairing homologues in the zygotene. In the advanced pachytene stage, the RNA becomes scarce in these structures. No DNA can be detected either in the lateral-medial fibrils or in the medial arm. During diplotene the synaptonemal complex loses its individually and the synaptic space becomes wider and irregular. At the same time, loss of chromatin and a large increase of RNA-containing particles occur. These processes lead to the typical interphasic arrangement of nuclear components seen in the dictyate stage.  相似文献   

8.
9.
We describe the behaviour of synaptonemal complexes (SCs) in Syrian hamster and mouse oocytes. InMesocricetus auratus, synaptonemal complexes can be observed from birth up to 7 days of life. In foetuses fromMus musculus, synaptonemal complexes can be observed from the 14th day of gestation up to the first day post-partum, when the cells enter the dictyotene stage. In both species, synaptonemal complexes show, in general, the same morphology described in male cells by light and electron microscopy, with the exception that the axes of the sex bivalent are not identifiable. The leptotene stage can be identified although it is probably of short duration. Only one type of zygotene (zygote ne II of Dietrich and Mulder(Chromosoma 88: 377), 1983) has been observed. In the hamster we also describe a desynaptic diplotene stage previous to the desintegration of the SCs. In oocytes from both species late pairing (or precocious separation) of a single bivalent can be seen in a few cells. Interlocking of some bivalents with delayed pairing of the affected region is rather frequent. Furthermore, hamster oocytes may show heterosynapsis of the telomeres of autosomal bivalents by pachytene.  相似文献   

10.
Denise Zickler 《Chromosoma》1977,61(4):289-316
Complete reconstruction of seven leptotene, six zygotene, three pachytene and three diplotene nuclei has permitted to follow the pairing process in the Ascomycete Sordaria macrospora. The seven bivalents in Sordaria can be identified by their length. The lateral components of the synaptonemal complexes (SC) are formed just after karyogamy but are discontinuous at early leptotene. Their ends are evenly distributed on the nuclear envelope. The homologous chromosomes alignment occurs at late leptotene before SC formation. The precise pairing starts when a distance of 200–300 nm is reached. Each bivalent has several independent central component initiation sites with preferentially pairing starting near the nuclear envelope. These sites are located in a constant position along the different bivalents in the 6 observed nuclei. The seven bivalents are not synchronous either in the process of alignment or in SC formation: the small chromosomes are paired first. At pachytene the SC is completed in each of the 7 bivalents. Six bivalents have one fixed and one randomly attached telomeres. The fixed end of the nucleolar organizer is the nucleolus anchored end. At diffuse stage and diplotene, only small stretches of the SC are preserved. The lateral components increase in length is approximately 34% between leptotene and pachytene. Their lengths remain constant during pachytene. From zygotene to diplotene the central components contain local thickenings (nodules). At late zygotene and pachytene each bivalent has 1 to 4 nodules and the location of at least one is constant. The total number of nodules remains constant from pachytene to diplotene and is equal to the mean total number of chiasmata. The observations provide additional insight into meiotic processes such as chromosome movements, initiation and development of the pairing sites during zygotene, the existence of fixed telomeres, the variations in SC length. The correspondence between nodules and chiasmata are discussed.  相似文献   

11.
Aedes aegypti spermatocytes were reconstructed from electron micrographs. The species has tight somatic pairing of the chromosomes, and there are therefore no classical leptotene and zygotene stages, but rather a gradual transition from somatic pairing to meiotic pairing (= pachytene). The term prepachytene has been used for the transitory stage. The first visible sign of impending meiosis was a reorganization of the chromatin, which resulted in the formation of spaces (synaptic spaces) in the chromatin, about the width of the synaptonemal complexes (SCs). Diffuse material, possibly precursor material for the SC, was present in the spaces. Later short pieces of complex were formed throughout the nucleus. Late prepachytene, pachytene, and diplotene complexes were reconstructed. Each chromosome occupied a separate region of the nucleus. The complexes became progressively shorter from prepachytene (maximum complement length 289 m) to diplotene (175 m). The thickness of the SCs increased from prepachytene to pachytene and probably decreased again during diplotene. At the beginning of diplotene the lateral elements (LEs) separated, and the single LEs became two to three times thicker than the LEs of the SC. The centromeres were at all stages attached to the nuclear membrane, whereas the telomeres were free in the nucleoplasm during pachytene and diplotene. A heterochromatic marker was present on chromosome 1 near the sex determining locus, and a diffuse marker on chromosome 3 near the nucleolus organizer region. After breakdown of the complexes, polycomplexes were present in the nucleus.  相似文献   

12.
The chromosomes were studied throughout meiotic prophase by electron microscopy of surface-spread oocytes from one XX, four X*X, and three X*Y female wood lemmings, Myopus schisticolor. The X* chromosome had originated from X by a deletion and an inversion in the short arm. The deletion was confirmed in pachytene cells from X*X females; a D-loop was present in the sex bivalent in 16.8% of the cells, and asynapsis of unequal ends was seen in 9.1% of other cells. At late pachytene the D-loop underwent synaptic adjustment. The breakpoints of the deletion are in G-light bands. No inversion loop was seen, which also is in agreement with Ashley's ('88) hypothesis; at least one of the presumed breakpoints of the inversion is in G-dark chromatin. Various types of synaptic abnormalities, such as nonhomologous pairing (triple pairing, interchange, self-synapsis), univalents, foldbacks, and broken lateral elements, were encountered in all types of female. X*Y females showed a high frequency of abnormal oocytes (70.7%), which significantly exceeded that of X*X (23.1%) and XX (8.1%). Univalents were particularly common in the X*Y females. J. Exp. Zool. 290:504-516, 2001.  相似文献   

13.
14.
Analyses of meiotic pairing and synaptonemal complexes of the composite sex chromosomes of male phyllostomid bats with X-autosome or X- and Y-autosome translocations were performed using Giemsa and silver staining procedures. Typical mammalian sex vesicles were absent in all species analyzed. Stenodermatine species with X-autosome translocations possessed an open ring and tail configuration of the XY1Y2 trivalent. Species with both X- and Y-autosome translocations possessed a closed ring and tail configuration of the neo-XY bivalent. In both cases, the tail represented the autosomal short arm of the X paired with its homologue, either the Y2 in XY1Y2 species or the autosomal arm of the composite Y in neo-XY species. Autosomal pairing of the composite sex bivalent in neo-XY species replaced an association between the original X and Y in late prophase I. The absence of a sex vesicle, the unusual pairing configurations of the composite sex chromosomes, and the presumed absence of meiotic nondisjunction in these species is discussed in light of current hypotheses of sex chromosome behavior in male gametogenesis in mammals.  相似文献   

15.
家鸡联会复合体的亚显微结构分析   总被引:1,自引:0,他引:1  
刘冬梅  张传善 《动物学报》1990,36(4):360-365
本文以表面铺展——硝酸银染色技术,对家鸡的联会复合体(Syneptonemal Complex,SC)作亚显微结构分析。根据对10个精母细胞和10个卵母细胞SC的测量结果,绘制组型图。发现雌雄家鸡的常染色体的SC组型相同。在精母细胞中,性染色体(ZZ)的行为与常染色体相似。在卵母细胞中,性染色体ZW的长度不同,长轴为Z,短轴为W,两者之间只有部分配对,形成SC。从早粗线期到晚粗线期,由同源配对调整为非同源配对。另外,在一只雌鸡中,第一次观察到,有些细胞的常染色体能正常配对,而性染色体完全不配对的现象。  相似文献   

16.
G. H. Jones 《Chromosoma》1973,42(2):145-162
The relationship of chromosome pairing to chiasma localisation in the grasshopper Stethophyma grossum was investigated by a combined light and electron microscope study. Observations on the extent of synaptonemal complex formation in spermatocytes suggest that pairing is complete in all chromosome regions and that localised chiasmata do not therefore follow from localised pairing of homologues. This study also revealed an unprecedented variant of synaptonemal complex structure. Each bivalent was found to contain an asymmetrical region within which one lateral element was enormously enlarged while the other lateral element retained normal dimensions. This asymmetrical region is probably confined to one end of each bivalent and seems to extend constantly about 4 from the nuclear membrane attachment site. The possible significance of this variant of synaptonemal complex structure is briefly discussed.  相似文献   

17.
Meiotic prophase in rye was investigated by serial-section reconstruction of pollen mother cell nuclei. In the mid-late zygotene nucleus, all lateral elements were continuous from telomere to telomere, and 9–20 pairing initiation sites per bivalent were observed. Chromosome and bivalent interlockings detected during zygotene were resolved at early pachytene when pairing was completed. In the three pachytene nuclei, the relative synaptonemal complex (SC) lengths and arm ratios were found to be in good correlation with light microscopic data of pachytene bivalents. Spatial tracing of the bivalents showed that they occupy separate areas in the nucleus. Three types of recombination nodules were observed: large, ellipsoïdal and small nodules at early pachytene and irregularly shaped nodules mainly associated with chromatin at late pachytene. Their number and position along the bivalents correlated well with the number and distribution of chiasmata. The classification of the seven bivalents was based on arm ratio and heterochromatic knob distribution.  相似文献   

18.
The assembly and disassembly of the synaptonemal complexes (SCs) correlate with the progression of meiotic prophase I. Using immunostaining of the cohesin component SMC3, which is present in the axial elements of the SC, we characterized the synaptic process in chicken oocytes and quantified the frequency of the different prophase stages at hatching and at 3 different ages after hatching. The analysis provides detailed quantitative data regarding the meiotic stages in the chicken ovary showing that the maximum amount of pachytene oocytes is found around hatching and that oocytes reach the diplotene stage 5 days after entering into meiosis. We confirmed the asynchrony of the meiotic development in the female chicken gonad showing that the ovary has a composite population of cells at different stages from day 17 before hatching and for several days after hatching. The significance of these results is discussed in relationship to functional experimental procedures that involve avian oocytes.  相似文献   

19.
Synaptonemal complexes of the repopulating spermatocytes of male rats were analyzed day by day using silver-stained surface spread nuclei between 8 and 25 days after restricting the germ cell population to spermatogonia by treatment of gossypol acetic acid at 30 mg/kg body weight/day for 70 days. The method allowed sequential analysis of male meiotic prophase on successive days after the last day of treatment. The leptotene cells appeared on day 11 and were characterized by a network of lateral elements and large nucleolar bodies in a diffuse mass. On day 13 the unpaired lateral elements and short stretches of synaptonemal complexes characteristic for zygotene could be seen. Pachytene nuclei showing 20 autosomal synaptonemal complexes and XY axes appeared on day 15. The diplotene cells were defined on day 22 by the loss of a complete synaptonemal complex set and by the appearance of disjoined lateral elements and persistent segments of synaptonemal complexes.  相似文献   

20.
Summary Observations on the changes of the synaptonemal complex at the end of pachytene and in diplotene are reported. The synaptonemal complex disintegrates in diplotene by progressive disjoining of the lateral arms. The structures of the pairing space disappear. A residual piece of the synaptonemal complex is interpreted as a transitional stage of the process of disintegration. The lateral arms form single threads which disappear at the end of diplotene. No doubleness of the lateral arms can be detected, except a splitting in 3–4 laminae in the region near the fixation points at the nuclear envelope. The lateral arms do not separate in subunits at the end of the meiotic prophase. Chiasmata can not be recognized.
Zusammenfassung Beobachtungen über die Veränderungen des synaptonemalen Komplexes am Ende des Pachytäus und im Diplotän werden mitgeteilt. Im Diplotän löst sich der synaptonemale Komplex durch fortschreitende Trennung der lateralen Arme. Die Strukturen des Paarungs-Raumes verschwinden. Ein Rest des synaptonemalen Komplexes wird als Übergangsstadium im Laufe des Desintegrations-Prozesses gedeutet. Die lateralen Arme bilden Einzelstränge, die am Ende des Diplotäns verschwinden. Eine Verdopplung des lateralen Armes kann nicht entdeckt werden; lediglich in der Nähe des Fixationspunktes an der Nuclearmembran findet sich eine Aufspaltung in 3–4 Lamellen. Am Ende der meiotischen Prophase trenne sich demnach die lateralen Arme nicht in Untereinheiten. Chiasmata sind nicht erkennbar.


This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号