首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure-based 3D-QSAR studies were performed on 20 thiazoles against their binding affinities to the 5-HT3 receptor with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The thiazoles were initially docked into the binding pocket of a human 5-HT3A receptor homology model, constructed on the basis of the crystal structure of the snail acetylcholine binding protein (AChBP), using the GOLD program. The docked conformations were then extracted and used to build the 3D-QSAR models, with cross-validated values 0.785 and 0.744 for CoMFA and CoMSIA, respectively. An additional five molecules were used to validate the models further, giving satisfactory predictive values of 0.582 and 0.804 for CoMFA and CoMSIA, respectively. The results would be helpful for the discovery of new potent and selective 5-HT3 receptor antagonists.   相似文献   

2.
A 3D-QSAR analysis has been carried out by comparative molecular field analysis (CoMFA) on a series of distamycin analogs that bind to the DNA of drug-resistant bacterial strains MRSA, PRSP and VSEF. The structures of the molecules were derived from the X-ray structure of distamycin bound to DNA and were aligned using the Database alignment method in Sybyl. Statistically significant CoMFA models for each activity were generated. The CoMFA contours throw light on the structure activity relationship (SAR) and help to identify novel features that can be incorporated into the distamycin framework to improve the activity. Common contours have been gleaned from the three models to construct a unified model that explains the steric and electrostatic requirements for antimicrobial activity against the three resistant strains. Figure A unified CoMFA model for broad-spectrum DNA minor-groove binders  相似文献   

3.
Inhibition of leukocyte-specific protein tyrosine kinase (Lck) activity offers one of the approaches for the treatment of T-cell mediated inflammatory disorders including rheumatoid arthritis, transplant rejection and inflammatory bowel disease. To explore the relationship between the structures of the N-4 Pyrimidinyl-1H-indazol-4-amines and their Lck inhibition, 3D-QSAR study using CoMFA analysis have been performed on a dataset of 42 molecules. The bioactive conformation of the template molecule, selected as the most potent molecule 23 from the series was obtained by performing molecular docking at the ATP binding site of Lck, which is then used to build the rest of the molecules in the series. The constructed CoMFA model is robust with of 0.603 and conventional r2 of 0.983. The predictive power of the developed model was obtained using a test set of 10 molecules, giving predictive correlation coefficient of 0.921. CoMFA contour analysis was performed to obtain useful information about the structural requirements for the Lck inhibitors which could be utilized in its future design. Figure CoMFA steric contour map. Sterically favored areas (contribution level 80%) are represented by green polyhedra. Sterically disfavored areas (contribution level 20%) are represented by yellow polyhedra. The active molecule 23 shown in capped sticks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
3D-QSAR and molecular docking analysis were performed to explore the interaction of estrogen receptors (ERα and ERβ) with a series of 3-arylquinazolinethione derivatives. Using the conformations of these compounds revealed by molecular docking, CoMFA analysis resulted in the first quantitative structure-activity relationship (QSAR) and first quantitative structure-selectivity relationship (QSSR) models predicting the inhibitory activity against ERβ and the selectivity against ERá. The q2 and R2 values, along with further testing, indicate that the obtained 3D-QSAR and 3D-QSSR models will be valuable in predicting both the inhibitory activity and selectivity of 3-arylquinazolinethione derivatives for these protein targets. A set of 3D contour plots drawn based on the 3D-QSAR and 3D-QSSR models reveal modifications of substituents at C2 and C5 of the quinazoline which my be useful to improve both the activity and selectivity of ERβ/ ERα. Results showed that both the steric and electrostatic factors should appropriately be taken into account in future rational design and development of more active and more selective ERβ inhibitors for the therapeutic treatment of osteoporosis. Figure Structures of ERβ binding with compounds 1aar, 1ax and 1aag obtained from molecular docking  相似文献   

6.
A novel molecular connectivity index, , based on the adjacency matrix of molecular graphs and novel atomic valence connectivities, , for predicting the molar diamagnetic susceptibilities of organic compounds is proposed. The is defined as: , where and Ei are the atomic valence connectivity and the valence orbital energy of atom i, respectively. A good QSPR model for molar diamagnetic susceptibilities can be constructed from and using multivariate linear regression (MLR). The correlation coefficient r, standard error, and average absolute deviation of the MLR model are 0.9918, 5.56 cgs, and 4.26 cgs, respectively, for the 721 organic compounds tested (training set). Cross-validation using the leave-one-out method demonstrates that the MLR model is highly reliable statistically. Using the MLR model, the average absolute deviations of the predicted values of molar diamagnetic susceptibility of another 360 organic compounds (test set) is 4.34 cgs. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an organic compound. The MLR method thus provides an acceptable model for the prediction of molar diamagnetic susceptibilities of organic compounds. Figure Plot of calculated vs experimental values of molar diamagnetic susceptibilities using the multivariate linear regression (MLR) model (Eq. 8)  相似文献   

7.
A 3D QSAR analysis has been performed on a series of 67 benzodiazepine analogues reported as γ-secretase inhibitors using molecular field analysis (MFA), with G/PLS to predict steric and electrostatic molecular field interaction for the activity. The MFA study was carried out using a training set of 54 compounds. The predictive ability of model developed was assessed using a test set of 13 compounds ( as high as 0.729). The analyzed MFA model has demonstrated a good fit, having r2 value of 0.858 and cross validated coefficient, value as 0.790. The analysis of the best MFA model provided insight into possible modification of the molecules for better activity.   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses using CoMFA and CoMSIA methods were conducted on a series of fluoropyrrolidine amides as dipeptidyl peptidase IV (DP-IV) inhibitors. The selected ligands were docked into the binding site of the 3D model of DP-IV using the GOLD software, and the possible interaction models between DP-IV and the inhibitors were obtained. Based on the binding conformations of these fluoropyrrolidine amides and their alignment inside the binding pocket of DP-IV, predictive 3D-QSAR models were established by CoMFA and CoMSIA analyses, which had conventional r 2 and cross-validated coefficient values () up to 0.982 and 0.555 for CoMFA and 0.953 and 0.613 for CoMSIA, respectively. The predictive ability of these models was validated by six compounds that were in the testing set. Structure-based investigations and the final 3D-QSAR results provide the guide for designing new potent inhibitors.  相似文献   

9.
Microsomal prostaglandin E2 synthase (mPGES-1) has been identified recently as a novel target for treating pain and inflammation. The aim of this study is to understand the binding affinities of reported inhibitors for mPGES-1 and further to design potential new mPGES-1 inhibitors. 3D-QSAR-CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) - techniques were employed on a series of indole derivatives that act as selective mPGES-1 inhibitors. The lowest energy conformer of the most active compound obtained from systematic conformational search was used as a template for the alignment of 32 compounds. The models obtained were used to predict the activities of the test set of eight compounds, and the predicted values were in good agreement with the experimental results. The 3D-QSAR models derived from the training set of 24 compounds were all statistically significant (CoMFA; q 2 = 0.89, r 2 = 0.95, , and CoMSIA; q 2 = 0.84, r 2 = 0.93, , ). Contour plots generated for the CoMFA and CoMSIA models reveal useful clues for improving the activity of mPGES-1 inhibitors. In particular, substitutions of an electronegative fluorine atom or a bulky hydrophilic phenoxy group at the meta or para positions of the biphenyl rings might improve inhibitory activity. A plausible binding mode between the ligands and mPGES-1 is also proposed.  相似文献   

10.
A mechanical molecular rotation model for liquid crystal (LC) systems is employed to evaluate phase transition temperature of fluorinated phenylbicyclohexane isomeric LC compounds. Results show that when a fluorine atom is substituted along the molecular long axis, an LC molecule acquires high rotational speed and its rotation becomes stable, thereby resulting in a better thermal stability of the nematic phase. A novel explanation is proposed for the behavior of the nematic-isotropic phase of the LC system when a heavy atom is substituted along the molecular long axis. Figure Molecular conformation of fluorinated bicyclohexylphenyl compounds. . The fluorine atoms are substituted in different positions 2, 3, 4, and 5 of the phenyl ring, respectively. The axis expresses molecular long rotation axis.  相似文献   

11.
Solvated electrons () are produced during water radiolysis and can interact with biological substrates, including DNA. To augment DNA damage, radiosensitizers such as bromo-deoxyuridine (BUdR), often referred to as an “electron affinic radiosensitizer”, are incorporated in place of isosteric thymidine. However, little is known about the primary interactions of with DNA. In the present study we addressed this problem by applying molecular modeling and molecular dynamics (MD) simulations to a system of normal (BUdR·A)-DNA and a hydrated electron, where the excess electron was modeled as a localized (H2O)6 anionic cluster. Our goals were to evaluate the suitability of the MD simulations for this application; to characterize the motion of around DNA (e.g., diffusion coefficients); to identify and describe configurational states of close localization to DNA; and to evaluate the structural dynamics of DNA in the presence of . The results indicate that has distinct space-preferences for forming close contacts with DNA and is more likely to interact directly with nucleotides other than BUdR. Several classes of DNA - contact sites, all within the major groove, were distinguished depending on the structure of the intermediate water layer H-bonding pattern (or its absence, i.e., a direct H-bonding of with DNA bases). Large-scale structural perturbations were identified during and after the approached the DNA from the major groove side, coupled with deeper penetration of sodium counterions in the minor groove. Figure A rare configuration showing direct interaction between the solvated electron and DNA, where (yellow) and N7(A16) are H-bonded. The close approach from the major groove side invokes deep Na+ (magenta) penetration into the minor DNA groove (Fig. 7a).  相似文献   

12.
Geometry optimizations of tetraamino-tert-butylthiacalix[4]arene (tatbtc4a) and tetraamino-tert-butylcalix[4]arene (tatbc4a) complexes with acetate, oxalate, malonate, succinate, glutarate, adipate, and pimelate were carried out using the integrated MO:MO method. Thermodynamic quantities, preorganization energies and complexation energies of these complexes were obtained at the ONIOM(B3LYP/6-31G(d):AM1) level of theory. The relative stabilities of the tatbtc4a and tatbc4a complexes with carboxylate guests are reported. The complexes tatbtc4a/malonate and tatbc4a/oxalate were found to be the most stable species. The selectivity of the tatbtc4a receptor toward to malonate with respect to oxalate, in terms of selectivity coefficient, is 9.90×102. Figure Atom labeling of tatbtc4a/oxalate complex as a representative of host-guest system.  相似文献   

13.
Amino azobenzenes are important dyes in the food and textile industry but their application is limited due to their mutagenicity. Computational modeling techniques were used to help understand the factors responsible for mutagenicity, and several quantitative structure toxicity relationship (QSTR) models have been derived. HQSTR (hologram QSTR) analyses indicated that different substituents at sites on both rings contribute to mutagenicity. Fragment parameters such as bond (B) and connectivity(C), as well as donor-acceptor (DA)-based model provide significant results (q2 = 0.59, r2 = 0.92, ) explaining these harmful effect. HQSTR results indicated that a bulky group at ring “Y” and small group at ring “X” might help to decrease mutagenicity. 3D-QSTR based on comparative molecular field analyses (CoMFA) and comparative molecular similarity index analyses (CoMSIA) are also in agreement with HQSTR. The 3D QSTR studies reveal that steric and electrostatic field effects have a strong relationship with mutagenicity (for CoMFA: q2 = 0.51, r2 = 0.95, and for CoMSIA: q2 = 0.51, r2 = 0.93 and ). In summary, negative groups and steric bulk at ring “Y” and small groups at carbon-3 of ring “X” might be helpful in reducing the mutagenicity of azo dyes.  相似文献   

14.
The interaction of solvated electrons with DNA results in various types of DNA lesions. The in vitro and in vivo sensitisation of DNA to -induced damage is achieved by incorporation of the electron-affinity radiosensitiser bromodeoxyuridine (BUdR) in place of thymidine. However, in DNA duplexes containing single-stranded regions (bulged BUdR-DNA), the type of lesion is different and the efficiency of damage is enhanced. In particular, DNA interstrand crosslinks (ICL) form at high efficiency in bulged DNA but are not detectable in completely duplex DNA. Knowledge about the processes and interactions leading to these differences is obscure. Previously, we addressed the problem by applying molecular modelling and molecular dynamics (MD) simulations to a system of normal (BUdR·A)-DNA and a hydrated electron, where the excess electron was modelled as a localised eˉ(H2O)6 anionic cluster. The goal of the present study was to apply the same MD simulation to a wobble system, containing a pyrimidine–pyrimidine mismatched base pair, BUdR·T. The results show an overall dynamic pattern similar to that of the motion around normal DNA. However, the number of configuration states when was particularly close to DNA is different. Moreover, in the (BUdR·T)-wobble DNA system, the electron frequently approaches the brominated strand, including BUdR, which was not observed with the normal (BUdR·A)-DNA. The structure and exchange of water at the sites of immobilisation near DNA were also characterised. The structural dynamics of the wobble DNA is prone to more extensive perturbations, including frequent formation of cross-strand (cs) interatomic contacts. The structural deviations correlated with approaching DNA from the major groove side, with sodium ions trapped deep in the minor groove. Altogether, the obtained results confirm and/or throw light on dynamic-structure determinants possibly responsible for the enhanced radiation damage of wobble DNA. Figure The structure of the tightly bound single water-layer between the DNA and the electron (Site-8, five H2O molecules, bold capped sticks); the rest of the “second” shell waters (lines, in atom type colour) surround the ˉ(H2O)6 cluster (yellow, space fill). Orange dashed lines H-bonds; only one of the five molecules from the single H2O layer mediates a single-step H-bond bridge with N7(A8); the other four present a network of two(three)-step H-bond bridges between DNA/ partner atoms  相似文献   

15.
A global electrophilicity parameter and the aromaticity of some heterocyclic polyaromatic hydrocarbons were evaluated on the basis of DFT calculations. The substitution of carbon atoms by nitrogen atoms dramatically changes the global electrophilicity of the molecules, with the fully substituted molecule being the most electrophilic with a reactivity very close to that of fullerene. Figure Fully substituted heterohexabenzocoronene Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The pathway and ab initio direct kinetics of the decomposition 5-aminotetrazole (5-ATZ) to HN3 and NH2CN was investigated. Reactant, products and transition state were optimized with MP2 and B3LYP methods using 6–311G** and aug-cc-pVDZ basis sets. The intrinsic reaction coordinate curve of the reaction was calculated using the MP2 method with 6–311G** basis set. The energies were refined using CCSD(T)/6–311G**. Rate constants were evaluated by conventional transition-state theory (CVT) and canonical variational transition-state theory (TST), with tunneling effect over 300 to 2,500 K. The results indicated that the tunneling effect and the variational effect are small for the calculated rate constants. The fitted three-parameter expression calculated using the CVT and TST methods are and , respectively. Figure The mechanism of the decomposition process of 5-ATZ to HN3 and NH2CN  相似文献   

17.
As a follow-up study to our study on tetrazane (N4H6), we present computed thermodynamic properties of triazane (N3H5). Calculated properties include optimized geometries, infrared vibrations, enthalpy of formation, enthalpy of combustion, and proton affinities. We have also mapped the potential energy surface as the molecule is rotated about the N-N bond. We have predicted a specific enthalpy of combustion for triazane of about -20 kJ g−1. Figure Schematic diagram of the dielectric barrier discharge (left) and typical temporal profiles of voltage and current, as obtained from the simulations (right)  相似文献   

18.
Comparative quantitative structure–activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r 2 = 0.957, q 2 = 0.569; CoMSIA r 2 = 0.924, q 2 = 0.520; HQSAR r 2 = 0.860, q 2 = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r 2 values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor–ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. Figure Superimposition of comparative molecular field analysis (CoMFA) contour plot in the active site of peptide deformylase (PDF)  相似文献   

19.
A pattern recognition algorithm for the alignment of drug-like molecules has been implemented. The method is based on the calculation of quantum mechanical derived local properties defined on a molecular surface. This approach has been shown to be very useful in attempting to derive generalized, non-atom based representations of molecular structure. The visualization of these surfaces is described together with details of the methodology developed for their use in molecular overlay and similarity calculations. In addition, this paper also introduces an additional local property, the local curvature (C L), which can be used together with the quantum mechanical properties to describe the local shape. The method is exemplified using some problems representing common tasks encountered in molecular similarity. Figure Molecular surfaces for Lorazepam (left) and Diazepam (right)  相似文献   

20.
Recently, a series of xanthone analogues has been identified as α-glucosidase inhibitors. To provide deeper insight into the three-dimensional (3D) structural requirements for the activities of these molecules, CoMFA and CoMSIA approaches were employed on 54 xanthones to construct 3D-QSAR models. Their bioactive conformations were first investigated by docking studies and optimized by subsequent molecular dynamics (MD) simulations using the homology modeled structure of the target protein. Based on the docking/MD-determined conformers, 3D-QSAR studies generated several significant models in terms of 47 molecules as the training set. The best model (CoMSIA-SHA) yielded q 2 of 0.713, r 2 of 0.967 and F of 140.250. The robustness of the model was further externally confirmed by a test set of the remaining molecules (q 2 = 0.793, r 2 = 0.902, and k = 0.905). Contour maps provided much information for future design and optimization of new compounds with high inhibitory activities towards α-glucosidase.
Graphical Abstract CoMSIA/SHA contour map of xanthone α-glucosidase inhibitor
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号