首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Important pathogens in the genus Yersinia include the plague bacillus Yersinia pestis and two enteropathogenic species, Yersinia pseudotuberculosis and Yersinia enterocolitica. A shift in growth temperature induced changes in the number and type of acyl groups on the lipid A of all three species. After growth at 37 degrees C, Y. pestis lipopolysaccharide (LPS) contained the tetra-acylated lipid IV(A) and smaller amounts of lipid IV(A) modified with C10 or C12 acyl groups, Y. pseudotuberculosis contained the same forms as part of a more heterogeneous population in which lipid IV(A) modified with C16:0 predominated, and Y. enterocolitica produced a unique tetra-acylated lipid A. When grown at 21 degrees C, however, the three yersiniae synthesized LPS containing predominantly hexa-acylated lipid A. This more complex lipid A stimulated human monocytes to secrete tumour necrosis factor-alpha, whereas the lipid A synthesized by the three species at 37 degrees C did not. The Y. pestis phoP gene was required for aminoarabinose modification of lipid A, but not for the temperature-dependent acylation changes. The results suggest that the production of a less immunostimulatory form of LPS upon entry into the mammalian host is a conserved pathogenesis mechanism in the genus Yersinia, and that species-specific lipid A forms may be important for life cycle and pathogenicity differences.  相似文献   

2.
3.
A rapid method for the detection, purification, and identification of proteins in bacterial extracts was developed using surface enhanced laser desorption/ionization (SELDI) ProteinChip technology. The effectiveness of this technique for monitoring the expression and identification of temperature- and calcium-regulated virulence factors of Yersinia pestis, the bacterium that causes human plague, is demonstrated. Y. pestis infection of its mammalian host is thought to be accompanied by rapid up-regulation of a number of genes following a shift from 26 degrees C (the temperature of the flea vector) to 37 degrees C (the temperature of the mammalian host). To model this process, Y. pestis cells were grown at 26 degrees C and 37 degrees C in a Ca(2+)-deficient medium. Through an initial protein profiling of the crude bacterial extract on strong anion exchange and copper affinity, ProteinChip arrays detected five proteins that were up-regulated and three proteins that were down-regulated at 37 degrees C. Two of the proteins predominately expressed at 37 degrees C were semi-purified in less than two days. The two proteins were identified as catalase-peroxidase and Antigen 4. Aside from its speed, a salient feature of the SELDI technique is the microgram amounts of crude sample required for analysis.  相似文献   

4.
Yersinia pestis spread throughout the Americas in the early 20th century, and it occurs predominantly as a single clone within this part of the world. However, within Eurasia and parts of Africa there is significant diversity among Y. pestis strains, which can be classified into different biovars (bv.) and/or subspecies (ssp.), with bv. orientalis/ssp. pestis most closely related to the American clone. To determine one aspect of the relatedness of these different Y. pestis isolates, the structure of the lipopolysaccharide (LPS) of four wild-type and one LPS-mutant Eurasian/African strains of Y. pestis was determined, evaluating effects of growth at mammalian (37 degrees C) or flea (25 degrees C) temperatures on the structure and composition of the core oligosaccharide and lipid A. In the wild-type clones of ssp. pestis, a single major core glycoform was synthesized at 37 degrees C whereas multiple core oligosaccharide glycoforms were produced at 25 degrees C. Structural differences occurred primarily in the terminal monosaccharides. Only tetraacyl lipid A was made at 37 degrees C, whereas at 25 degrees C additional pentaacyl and hexaacyl lipid A structures were produced. 4-Amino-4-deoxyarabinose levels in lipid A increased with lower growth temperatures or when bacteria were cultured in the presence of polymyxin B. In Y. pestis ssp. caucasica, the LPS core lacked D-glycero-D-manno-heptose and the content of 4-amino-4-deoxyarabinose showed no dependence on growth temperature, whereas the degree of acylation of the lipid A and the structure of the oligosaccharide core were temperature dependent. A spontaneous deep-rough LPS mutant strain possessed only a disaccharide core and a slightly variant lipid A. The diversity and differences in the structure of the Y. pestis LPS suggest important contributions of these variations to the pathogenesis of this organism, potentially related to innate and acquired immune recognition of Y. pestis and epidemiologic means to detect, classify, control and respond to Y. pestis infections.  相似文献   

5.
Following a report of variations in the lipopolysaccharide (LPS) structure of Yersinia pestis at mammalian (37 degrees C) and flea (25 degrees C) temperatures, a number of changes to the LPS structure were observed when the bacterium was cultivated at a temperature of winter-hibernating rodents (6 degrees C). In addition to one of the known Y. pestis LPS types, LPS of a new type was isolated from Y. pestis KM218 grown at 6 degrees C. The core of the latter differs in: (i) replacement of terminal galactose with terminal d-glycero-d-manno-heptose; (ii) phosphorylation of terminal oct-2-ulosonic acid with phosphoethanolamine; (iii) a lower content of GlcNAc, and; (iv) the absence of glycine; lipid A differs in the lack of any 4-amino-4-deoxyarabinose and presumably partial (di)oxygenation of a fatty acid(s). The data obtained suggest that cold temperature switches on an alternative mechanism of control of the synthesis of Y. pestis LPS.  相似文献   

6.
7.
The two-component regulatory system PhoPQ has been shown to regulate the expression of virulence factors in a number of bacterial species. For one such virulence factor, lipopolysaccharide (LPS), the PhoPQ system has been shown to regulate structural modifications in Salmonella enterica var Typhimurium. In Yersinia pestis, which expresses lipo-oligosaccharide (LOS), a PhoPQ regulatory system has been identified and an isogenic mutant constructed. To investigate potential modifications to LOS from Y. pestis, which to date has not been fully characterized, purified LOS from wild-type plague and the phoP defective mutant were analysed by mass spectrometry. Here we report the structural characterization of LOS from Y. pestis and the direct comparison of LOS from a phoP mutant. Structural modifications to lipid A, the host signalling portion of LOS, were not detected but analysis of the core revealed the expression of two distinct molecular species in wild-type LOS, differing in terminal galactose or heptose. The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose. The minimum inhibitory concentration of cationic antimicrobial peptides for the two strains was determined and compared with the wild-type: the phoP mutant was highly sensitive to polymyxin. Thus, LOS modification is under the control of the PhoPQ regulatory system and the ability to alter LOS structure may be required for survival of Y. pestis within the mammalian and/or flea host.  相似文献   

8.
The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar.  相似文献   

9.
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis form biofilms that adhere to the external mouthparts and block feeding of Caenorhabditis elegans nematodes, which has been proposed as a model of Y. pestis-flea interactions. We compared the ability of Y. pestis and Y. pseudotuberculosis to infect the rat flea Xenopsylla cheopis and to produce biofilms in the flea and in vitro. Five of 18 Y. pseudotuberculosis strains, encompassing seven serotypes, including all three serotype O3 strains tested, were unable to stably colonize the flea midgut. The other strains persisted in the flea midgut for 4 weeks but did not increase in numbers, and none of the 18 strains colonized the proventriculus or produced a biofilm in the flea. Y. pseudotuberculosis strains also varied greatly in their ability to produce biofilms in vitro, but there was no correlation between biofilm phenotype in vitro or on the surface of C. elegans and the ability to colonize or block fleas. Our results support a model in which a genetic change in the Y. pseudotuberculosis progenitor of Y. pestis extended its pre-existing ex vivo biofilm-forming ability to the flea gut environment, thus enabling proventricular blockage and efficient flea-borne transmission.  相似文献   

10.
Epizootological role of fleas in the Gorno-Altai natural plague focus (Sailugemsk focus) and numerous data on the flea viability are analyzed and generalized. Information concerning the flea natural infectivity with Yersinia pestis altaica is represented. Ecological peculiarities of some flea species parasitizing the main host, Mongolian pika Ochotona pallasi, and nature of their interrelations with Y. pestis are investigated. It is shown that the flea taxocenosis provides the permanent all year-round circulation of Y. pestis in the Gorno-Altai natural focus. Certain combinations of structural elements of the flea taxocenosis have a dominant significance in determination the circulation process at different phases of the annual epizootic cycle.  相似文献   

11.
The endotoxic activity of the lipopolysaccharides (LPS) with defined chemical structure from Yersinia pestis strains of various subspecies differing in their epidemic potential was studied. The LPS of two strains of Y. pestis ssp. caucasica and ssp. altaica, whose structures have not been studied earlier, were analyzed by high-resolution mass spectrometry. In addition to reported structural changes, an increase in the degree of LPS phosphorylation was observed when strain I-2377 (ssp. altaica) was cultivated at an elevated temperature. A high tumor necrosis factor alpha(TNF-alpha)-inducing activity observed for LPS samples from Y. pestis cultures grown at 25 degrees C correlated with an increased degree of lipid A acylation, particularly, with the presence of the hexaacyl form of lipid A, which was absent from the LPS when bacteria were cultivated at 37 degrees C. No correlation was found between the lethal toxicity of the LPS in vivo and its ability to induce TNF-alpha production in vitro.  相似文献   

12.
13.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.  相似文献   

14.
All possible combinations of insertion mutations in the three genes encoding the acyl carrier protein-dependent late acyltransferases of lipid A biosynthesis, designated lpxL(htrB), lpxM(msbB), and lpxP, were generated in Escherichia coli K12 W3110. Mutants defective in lpxM synthesize penta-acylated lipid A molecules and grow normally. Strains lacking lpxP fail to incorporate palmitoleate into their lipid A at 12 degrees C but make normal amounts of hexa-acylated lipid A and are viable. Although lpxL mutants and lpxL lpxM double mutants grow slowly on minimal medium at all temperatures, they do not grow on nutrient broth above 32 degrees C. Such mutants retain the ability to synthesize some penta- and hexa-acylated lipid A molecules because of limited induction of lpxP at 30 degrees C but not above 32 degrees C. MKV15, an E. coli lpxL lpxM lpxP triple mutant, likewise grows slowly on minimal medium at all temperatures but not on nutrient broth at any temperature. MKV15 synthesizes a lipid A molecule containing only the four primary (R)-3-hydroxymyristoyl chains. The outer membrane localization and content of lipid A are nearly normal in MKV15, as is the glycerophospholipid and membrane protein composition. However, the rate at which the tetra-acylated lipid A of MKV15 is exported to the outer membrane is reduced compared with wild type. The integrity of the outer membrane of MKV15 is compromised, as judged by antibiotic hypersensitivity, and MKV15 undergoes lysis following centrifugation. MKV15 may prove useful as a host strain for expressing late acyltransferase genes from other Gram-negative bacteria, facilitating the re-engineering of lipid A structure in living cells and the design of novel vaccines.  相似文献   

15.
The periplasmic proteome of Yersinia pestis strain KIM6+ was characterized using differential 2-DE display of proteins isolated from several subcellular fractions. Circa 160 proteins were designated as periplasmic, including 62 (putative) solute-binding proteins of ATP-binding cassette (ABC) transporters (SBPs) and 46 (putative) metabolic enzymes. More than 30 SBPs were significantly increased in abundance during stationary phase cell growth, compared to the exponential phase. The data suggest that nutrient exhaustion in the stationary phase triggers cellular responses resulting in the induced expression of numerous ABC transporters, which are responsible for the import of solutes/nutrients. Limited availability of inorganic phosphate (P(i)) also caused dramatic proteomic changes. Nine proteins were functionally linked to the mobilization and import of three small molecules (P(i), phosphonate and glycerol-3-phosphate) and accounted for nearly half of the total protein mass in the periplasm of P(i)-starved cells. When cells were grown at 26 degrees C versus 37 degrees C, corresponding to ambient temperatures in the flea vector and mammalian hosts, respectively, several periplasmic proteins with no known roles in the Y. pestis life cycle were strongly altered in abundance. This included a putative nitrate/sulfonate/bicarbonate-specific SBP (Y1004), encoded by the virulence-associated plasmid pMT1 and increased in abundance at 37 degrees C.  相似文献   

16.
Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during inter-epizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (~725-1160 m) to higher elevation sites within the focus (~1380-1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence.  相似文献   

17.
18.
It is known that Yersinia pestis kills Caenorhabditis elegans by a biofilm-dependent mechanism that is similar to the mechanism used by the pathogen to block food intake in the flea vector. Using Y. pestis KIM 5, which lacks the genes that are required for biofilm formation, we show that Y. pestis can kill C. elegans by a biofilm-independent mechanism that correlates with the accumulation of the pathogen in the intestine. We used this novel Y. pestis-C. elegans pathogenesis system to show that previously known and unknown virulence-related genes are required for full virulence in C. elegans. Six Y. pestis mutants with insertions in genes that are not related to virulence before were isolated using C. elegans. One of the six mutants carried an insertion in a novel virulence gene and showed significantly reduced virulence in a mouse model of Y. pestis pathogenesis. Our results indicate that the Y. pestis-C. elegans pathogenesis system that is described here can be used to identify and study previously uncharacterized Y. pestis gene products required for virulence in mammalian systems.  相似文献   

19.
The HtrA stress response protein has been shown to play a role in the virulence of a number of pathogens. For some organisms, htrA mutants are attenuated in the animal model and can be used as live vaccines. A Yersinia pestis htrA orthologue was identified, cloned and sequenced, showing 86% and 87% similarity to Escherichia coli and Salmonella typhimurium HtrAs. An isogenic Y. pestis htrA mutant was constructed using a reverse genetics approach. In contrast to the wild-type strain, the mutant failed to grow at an elevated temperature of 39 degrees C, but showed only a small increase in sensitivity to oxidative stress and was only partially attenuated in the animal model. However, the mutant exhibited a different protein expression profile to that of the wild-type strain when grown at 28 degrees C to simulate growth in the flea.  相似文献   

20.
鼠疫耶尔森氏菌是烈性传染病鼠疫的病原菌,该菌在媒介(跳蚤)和宿主(哺乳动物)之间的循环过程中,基因表达适应环境谱的变化。本介绍鼠疫耶尔森氏菌适应环境信号如不同温度、离子浓度、pH等条件下的基因表达调控研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号