首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP''s role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP−/− GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP−/− GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated.

Methodology/Principal Findings

In this study we examined SHIP''s role in DC-induced T cell suppression by co-culturing WT and SHIP−/− murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and −/− splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and −/− GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP−/− GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP−/− DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs.

Conclusions

These findings suggest that although both SHIP+/+ and −/− GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP−/− GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented.  相似文献   

2.
B cells, but not T cells, are considered to be important for the formation of follicular dendritic cell (FDC) clusters. Stimulation with agonist mAbs against CD137 (4-1BB), a TNFR family member primarily expressed on activated T cells, was effective in promoting T cell responses, but paradoxically suppressed T-dependent humoral immunity and autoantibody production in autoimmune disease models. Our present study shows that agonistic anti-CD137 treatment activates T cells, resulting in diminished FDC networks in B cell follicles, which are important components in T-dependent humoral immune responses both before and after the initiation of an immune response. Pretreatment with anti-CD137 before the secondary immunization inhibited memory Ab responses. Interestingly, CD137 costimulation-induced diminishment of FDC is T cell dependent. In addition, both CD4(+) and CD8(+) T cells are recruited into FDC area and are able to regulate FDCs by CD137 costimulation through a direct or indirect mechanism. These studies have revealed a previously unappreciated role of T cells in the regulation of FDC networks.  相似文献   

3.
4.
A cell line was established in vitro from a benign hair follicular tumor of human trichilemmoma. Individual and organized cellular differentiation of this cell line was studied. When these cells were cultured for a long time (more than 3 weeks) without subculture, they started to pile up spontaneously. A part of the pile became indented and simultaneously the opposite side of the indentation budded out. The bud slowly elongated 2 to 3 mm in length in 8 to 12 weeks in culture. Light and electron microscopy revealed the internal structure of piles and elongated buds to be a three-dimensional hair follicular structure. The cells in the outermost layer were least mature. These were cuboid in shape and contained glycogen. The cells in the middle layer were more differentiated with a decreased amount of glycogen and an increased number of tonofilaments and desmosomes. The cells in the innermost layer were most differentiated. Cells were flat in shape and highly convoluted. The cell membrane was thickened as observed in cornified cells in vivo. These organized differentiations were also confirmed by histochemical and immunocytochemical studies; using a fluorescent thiol reagent, N-(7-dimethylamino-4-methylcoumarinyl)-maleimide method, free sulfhydryl groups were detected but disulfide bonds were absent in the early cell culture. Disulfide bonds increased slowly and accumulated in the innermost layer of piles. Accumulation of keratin substances, detected by indirect immunofluorescence method using anti-human keratin antibody, was also observed specifically in the piles. These results suggest that an established cell line of human trichilemmoma spontaneously produced, without stromal influence, hair follicular structures as well as individual cell differentiations in vitro as do trichilemmal (hair follicular) cells in vivo.  相似文献   

5.
目的 研究 Caspase 通路在未成熟树突状细胞(imDC)诱导同种异体 CD4+ T 细胞转化为调节性 T 细胞(Treg)中的作用及探讨免疫耐受机制建立可能的分子机制.方法 将人外周血分离、培养出的imDC 与健康胎儿脐血中分离CD4+ T 细胞混合培养,同时加入zVAD-fmk,以流式细胞仪检测CD4+CD25+ T 细胞(Treg 细胞)转化率.结果 (1)imDC 的鉴定:外周血经诱导后分离的imDC,以流式细胞仪检测细胞表面分子,imDC 表面分子表达的结果:CD80(7.27 ± 0.13)、CD83(3.53 ± 0.35)、CD1a(4.29 ± 0.27);(2)混合培养后CD4+CD25+T细胞的转化率结果为:空白组(1.78 ± 0.11)﹪、对照组(22.23 ± 0.77)﹪、低浓度zVAD-fmk 组(21.63 ± 0.82)﹪、中浓度zVAD-fmk 组(12.24 ± 0.54)﹪、高浓度zVAD-fmk 组(12.20 ± 0.96)﹪,结果对照组和低浓度组、中浓度组和高浓度组间比较,P 〉 0.05,其余各组间比较,P 〈 0.05.加入zVAD-fmk 并与imDC 细胞混合培养的T 细胞转化率相对于未加入阻断剂的T 细胞较低,同时Caspase 信号通路对zVAD-fmk 无浓度依赖性.结论 imDC 可以诱导同种异体初始性CD4+ T 细胞分化为Treg.Caspase 信号通路特异性的阻断剂zVAD-fmk 可以部分抑制Treg 的转化,说明Caspase 信号通路在诱导免疫耐受中可能起了较为重要的作用.  相似文献   

6.
BMI-1 and EZH2 Polycomb-group (PcG) proteins belong to two distinct protein complexes involved in the regulation of hematopoiesis. Using unique PcG-specific antisera and triple immunofluorescence, we found that mature resting peripheral T cells expressed BMI-1, whereas dividing blasts were EZH2(+). By contrast, subcapsular immature double-negative (DN) (CD4(-)/CD8(-)) T cells in the thymus coexpressed BMI-1 and EZH2 or were BMI-1 single positive. Their descendants, double-positive (DP; CD4(+)/CD8(+)) cortical thymocytes, expressed EZH2 without BMI-1. Most EZH2(+) DN and DP thymocytes were dividing, while DN BMI-1(+)/EZH2(-) thymocytes were resting and proliferation was occasionally noted in DN BMI-1(+)/EZH2(+) cells. Maturation of DP cortical thymocytes to single-positive (CD4(+)/CD8(-) or CD8(+)/CD4(-)) medullar thymocytes correlated with decreased detectability of EZH2 and continued relative absence of BMI-1. Our data show that BMI-1 and EZH2 expression in mature peripheral T cells is mutually exclusive and linked to proliferation status, and that this pattern is not yet established in thymocytes of the cortex and medulla. T cell stage-specific PcG expression profiles suggest that PcG genes contribute to regulation of T cell differentiation. They probably reflect stabilization of cell type-specific gene expression and irreversibility of lineage choice. The difference in PcG expression between medullar thymocytes and mature interfollicular T cells indicates that additional maturation processes occur after thymocyte transportation from the thymus.  相似文献   

7.
Follicular dendritic cells (FDC) constitute the framework of germinal center (GC) in secondary lymphoid follicles, and the integrity of FDC networks is critically affected by cytokines present in the GC. We have previously shown that TNF promotes Fas-mediated apoptosis of HK cells, an established FDC-like cell line, by up-regulating Fas expression. However, in the developing GC, FDC death is not a hallmark of GC despite the presence of TNF and FasL. In this study, we report that TGF-beta inhibits Fas-mediated apoptosis of HK cells by down-regulating the expression of surface Fas and caspase-8. The inhibitory effect of TGF-beta can be observed when HK cells were simultaneously treated with TNF and TGF-beta, indicating that TGF-beta counteracts the effect of TNF in sensitizing cells to Fas-mediated apoptosis. Furthermore, the deprivation of TGF-beta by injecting neutralizing TGF-beta Abs to the SRBC-immunized mice resulted in the sporadic appearance of FDC undergoing apoptosis in the lymphoid follicles, suggesting that TGF-beta functions as a naturally occurring inhibitor that rescues FDCs which are predisposed to apoptosis. Our study documents a novel function of TGF-beta in the maintenance of FDC networks.  相似文献   

8.
Dendritic cells (DCs) are integral to the differentiation of T helper cells into T helper type 1 T(H)1, T(H)2 and T(H)17 subsets. Interleukin-6 (IL-6) plays an important part in regulating these three arms of the immune response by limiting the T(H)1 response and promoting the T(H)2 and T(H)17 responses. In this study, we investigated pathways in DCs that promote IL-6 production. We show that the allergen house dust mite (HDM) or the mucosal adjuvant cholera toxin promotes cell surface expression of c-Kit and its ligand, stem cell factor (SCF), on DCs. This dual upregulation of c-Kit and SCF results in sustained signaling downstream of c-Kit, promoting IL-6 secretion. Intranasal administration of antigen into c-Kit-mutant mice or neutralization of IL-6 in cultures established from the lung-draining lymph nodes of immunized wild-type mice blunted the T(H)2 and T(H)17 responses. DCs lacking functional c-Kit or those unable to express membrane-bound SCF secreted lower amounts of IL-6 in response to HDM or cholera toxin. DCs expressing nonfunctional c-Kit were unable to induce a robust T(H)2 or T(H)17 response and elicited diminished allergic airway inflammation when adoptively transferred into mice. Expression of the Notch ligand Jagged-2, which has been associated with T(H)2 differentiation, was blunted in DCs from c-Kit-mutant mice. c-Kit upregulation was specifically induced by T(H)2- and T(H)17-skewing stimuli, as the T(H)1-inducing adjuvant, CpG oligodeoxynucleotide, did not promote either c-Kit or Jagged-2 expression. DCs generated from mice expressing a catalytically inactive form of the p110delta subunit of phosphatidylinositol-3 (PI3) kinase (p110(D910A)) secreted lower amounts of IL-6 upon stimulation with cholera toxin. Collectively, these results highlight the importance of the c-Kit-PI3 kinase-IL-6 signaling axis in DCs in regulating T cell responses.  相似文献   

9.
与细胞发育和代谢相关的转录因子中,2000年才正式发布并统一命名的Fox家族受到了研究者的高度重视,其广泛存在于从酵母到哺乳类的真核生物中.FoxO转录因子作为Fox家族主要成员,是INS/IGF-1信号通路中的关键因子,通过转录调控和信号转导途径在动物的生理调节、代谢和细胞周期等方面起重要作用.  相似文献   

10.
Peptide hormones are secreted from endocrine cells and neurons and exert their actions through activation of G protein-coupled receptors to regulate a diverse number of physiological systems including control of energy homeostasis, gastrointestinal motility, neuroendocrine circuits, and hormone secretion. The glucagon-like peptides, GLP-1 and GLP-2 are prototype peptide hormones released from gut endocrine cells in response to nutrient ingestion that regulate not only energy absorption and disposal, but also cell proliferation and survival. GLP-1 expands islet mass by stimulating pancreatic beta-cell proliferation and induction of islet neogenesis. GLP-1 also promotes cell differentiation, from exocrine cells or immature islet progenitors, toward a more differentiated beta-cell phenotype. GLP-2 stimulates cell proliferation in the gastrointestinal mucosa, leading to expansion of the normal mucosal epithelium, or attenuation of intestinal injury in experimental models of intestinal disease. Both GLP-1 and GLP-2 exert antiapoptotic actions in vivo, resulting in preservation of beta-cell mass and gut epithelium, respectively. Furthermore, GLP-1 and GLP-2 promote direct resistance to apoptosis in cells expressing GLP-1 or GLP-2 receptors. Moreover, an increasing number of structurally related peptide hormones and neuropeptides exert cytoprotective effects through G protein-coupled receptor activation in diverse cell types. Hence, peptide hormones, as exemplified by GLP-1 and GLP-2, may prove to be useful adjunctive tools for enhancement of cell differentiation, tissue regeneration, and cytoprotection for the treatment of human disease.  相似文献   

11.
The fate of dendritic cells (DCs) after Ag presentation may be DC subset-specific and controlled by many factors. The role of activation-induced apoptosis in regulating DC function is not clear. We investigated the fate of cutaneous DCs (cDCs), specifically Langerhans cells (LCs), and observed that they undergo apoptosis after successful Ag presentation to CD4 T cells. Caspase-specific inhibitors revealed that LC lines use a type II apoptosis pathway in response to CD4 T cells. In support of this, BH3-interacting domain (Bid) protein was present at high levels and specifically cleaved in the presence of Ag-specific T cells. Significant resistance to apoptosis by OT-2 CD4 cells was also observed for Bid knockout (KO) LCs in vitro. To test whether Bid was required to regulate LC function in vivo, we measured contact sensitization and topical immunization responses in Bid KO mice and observed markedly enhanced ear swelling and proliferation responses compared with wild-type mice. Furthermore, when Ag-pulsed Bid KO migratory cDCs were inoculated into wild-type recipients, an increase in both the rate and percentage of expanded OT-2 T cells expressing IFN-gamma was observed. Thus, enhanced Ag presentation function was intrinsic to Bid KO cDCs. Therefore, Bid is an important regulator of LC viability and Ag presentation function.  相似文献   

12.
Cell and Tissue Research - Human follicular dendritic cell (FDC)-like cells (FLC) have been utilized for the in vitro analysis of germinal center reactions. However, there is no consensus whether...  相似文献   

13.
Primary C3 deficiency, a rare autosomal inherited disease (OMIM 120700), was identified in a 2-year-old male suffering from recurrent pyogenic infections from early infancy with undetectable total complement hemolytic activity (CH50) and C3 values. The nonconsanguineous parents and the two patients' two siblings had 50% normal serum C3 concentration. The molecular abnormality associated a paternal allele coding C3 with the missense mutation p.Ser(550)Pro and an apparently null maternal allele, with production of a defective protein that could no longer be secreted. Vaccination of the child did not induce a long-term Ab response. Accordingly, switched memory IgD(-)CD27(+) B cells were barely detected, amounting to only 2.3% of peripheral blood CD19(+) cells. Cells were significantly defective in stimulating alloreactive responses. The in vitro development of immature dendritic cells and their maturation capacity were greatly impaired, with decreased CD1a expression and IL-12p70 secretion ability. These cells were unable to induce autologous B cell proliferation and Ig secretion in the presence of CD40L and C3. Finally, the regulatory T cell development ability of CD4(+) T cells after CD3 and CD46 activation in the presence of IL-2 was significantly impaired. Thus, the association of important functional defects of dendritic cells, acquisition of B cell memory, and regulatory T cells with human C3 deficiency strongly supports a major role for C3 in bridging innate and adaptive immunity in humans.  相似文献   

14.
Studies on dendritic cells (DC) of the respiratory and gastric mucosae have identified an extensive network of cells that represent the predominant antigen-presenting cell type at these sites. Under steady-state conditions, respiratory tract DC (RTDC) are specialized for antigen uptake and spontaneously migrate to local lymph nodes, although in vivo transfer studies have shown that the T-cell priming activity of these cells is restricted to low-level, Th2-skewed responses. Following exposure to inflammatory stimuli, the migration of RTDC to lymph nodes is accelerated and is associated with a rapid and dramatic increase in the ability of these cells to induce both Th1- and Th2-dependent immunity. Under normal circumstances, however, responsiveness of epithelial RTDC to maturation stimuli is regulated by locally produced micro-environmental factors, including pro-inflammatory cytokines, reactive oxygen species and prostanoids. These studies have led to a greater understanding of airway DC function and their role in T helper cell differentiation and provide the basis for future studies to determine the role of the cells in the aetiology and pathogenesis of respiratory immunoinflammatory disorders.  相似文献   

15.
Follicular dendritic cells (FDC) play crucial roles in germinal center (GC) formation and differentiation of GC B cells. FDC functions are influenced by cytokines produced in the GC. Among the GC cytokines, TNF is known to be essential for the formation and maintenance of the FDC network in the GC. We found that TNF is a mitogenic growth factor to an established FDC-like cell line, HK cells. Differing from most cell types which become desensitized to TNF action, HK cells exhibited persistent TNF signaling, as demonstrated by prolonged and biphasic NF-kappaB activation even after 3 days of TNF treatment. As a result, antiapoptotic genes including TNFR-associated factors 1 and 2, and cellular inhibitor of apoptosis proteins 1 and 2 were persistently induced by TNF, leading to the protection against TNF-mediated cell death. However, TNF pretreatment enhanced Fas-mediated apoptosis by up-regulating surface Fas expression in an NF-kappaB-dependent pathway. During the GC responses, proliferation followed by FDC death has not been documented. However, our in vitro results suggest that FDCs proliferate in response to TNF, and die by Fas-mediated apoptosis whose susceptibility is enhanced by TNF, representing a mode of action for TNF in the maintenance of FDC networks by regulating the survival or death of FDC.  相似文献   

16.
LIGHT is a recently identified member of the TNF superfamily and its receptors, herpesvirus entry mediator and lymphotoxin beta receptor, are found in T cells and stromal cells. In this study, we demonstrate that LIGHT is selectively expressed on immature dendritic cells (DCs) generated from human PBMCs. In contrast, LIGHT is not detectable in DCs either freshly isolated from PBMCs or rendered mature in vitro by LPS treatment. Blockade of LIGHT by its soluble receptors, lymphotoxin beta receptor-Ig or HVEM-Ig, inhibits the induction of DC-mediated primary allogeneic T cell response. Furthermore, engagement of LIGHT costimulates human T cell proliferation, amplifies the NF-kappaB signaling pathway, and preferentially induces the production of IFN-gamma, but not IL-4, in the presence of an antigenic signal. Our results suggest that LIGHT is a costimulatory molecule involved in DC-mediated cellular immune responses.  相似文献   

17.
Va14Ja18 natural T (iNKT) cells are innate, immunoregulatory lymphocytes that recognize CD1d-restricted lipid Ags such as alpha-galactosylceramide (alpha GalCer). The immunoregulatory functions of iNKT cells are dependent upon either IFN-gamma or IL-4 production by these cells. We hypothesized that alpha GalCer presentation by different CD1d-positive cell types elicits distinct iNKT cell functions. In this study we report that dendritic cells (DC) play a critical role in alpha GalCer-mediated activation of iNKT cells and subsequent transactivation of NK cells. Remarkably, B lymphocytes suppress DC-mediated iNKT and NK cell activation. Nevertheless, alpha GalCer presentation by B cells elicits low IL-4 responses from iNKT cells. This finding is particularly interesting because we demonstrate that NOD DC are defective in eliciting iNKT cell function, but their B cells preferentially activate this T cell subset to secrete low levels of IL-4. Thus, the differential immune outcome based on the type of APC that displays glycolipid Ags in vivo has implications for the design of therapies that harness the immunoregulatory functions of iNKT cells.  相似文献   

18.
The differentiation of monocytes into dendritic cells (DC) is a key mechanism by which the innate immune system instructs the adaptive T cell response. In this study, we investigated whether leukocyte Ig-like receptor A2 (LILRA2) regulates DC differentiation by using leprosy as a model. LILRA2 protein expression was increased in the lesions of the progressive, lepromatous form vs the self-limited, tuberculoid form of leprosy. Double immunolabeling revealed LILRA2 expression on CD14+, CD68+ monocytes/macrophages. Activation of LILRA2 on peripheral blood monocytes impaired GM-CSF induced differentiation into immature DC, as evidenced by reduced expression of DC markers (MHC class II, CD1b, CD40, and CD206), but not macrophage markers (CD209 and CD14). Furthermore, LILRA2 activation abrogated Ag presentation to both CD1b- and MHC class II-restricted, Mycobacterium leprae-reactive T cells derived from leprosy patients, while cytokine profiles of LILRA2-activated monocytes demonstrated an increase in TNF-alpha, IL-6, IL-8, IL-12, and IL-10, but little effect on TGF-beta. Therefore, LILRA2 activation, by altering GM-CSF-induced monocyte differentiation into immature DC, provides a mechanism for down-regulating the ability of the innate immune system to activate the adaptive T cell response while promoting an inflammatory response.  相似文献   

19.
Ca2+ homeostasis controls a diversity of cellular processes including proliferation and apoptosis. A very important aspect of Ca2+ signaling is how different Ca2+ signals are translated into specific cell functions. In T cells, Ca2+ signals are induced following the recognition of antigen by the T cell receptor and depend mainly on Ca2+ influx through store-operated CRAC channels, which are mediated by ORAI proteins following their activation by STIM proteins. The complete absence of Ca2+ influx caused by mutations in Stim1 and Orai1 leads to severe immunodeficiency. Here we summarize how Ca2+ signals are tuned to regulate important T cell functions as proliferation, apoptosis and tolerance, the latter one being a special state of immune cells in which they can no longer respond properly to an otherwise activating stimulus. Perturbations of Ca2+ signaling may be linked to immune suppressive diseases and autoimmune diseases.  相似文献   

20.
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号