首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors involved in the uptake of corticosterone by rat liver cells   总被引:1,自引:0,他引:1  
Isolated rat liver cells take up corticosterone rapidly; the initial rates increase with increasing temperature. A plot of the initial rates against the concentration of corticosterone indicated the presence of saturable and nonsaturable uptake systems. The Eadie-Hofstee plot showed the presence of two saturable and one nonsaturable uptake components. The apparent Kt values of the saturable systems were 64 +/- 40 nM (n = 3) and 1085 +/- 313 nM (n = 12). The nonsaturable system, probably diffusion, contributed 12% to the total uptake between 15 and 72 nM corticosterone, the physiological concentration of the free corticosterone in rat serum. Metabolic inhibitors did not influence the uptake of corticosterone. N-Ethylmaleimide, 1-fluoro-2,4-dinitrobenzene and sodium ethyl mercurithiosalicylate (1 mM each) decreased the uptake by 40%. Iodoacetate did not have any influence. Treatment of cells with phospholipase A inhibited the uptake 35--45%. In the presence of cortisone, cortisol, dexamethasone, aldosterone, testosterone, estradiol-17beta and estrone (2 muM each) the uptake decreased 30--50%. The presence of serum proteins in the external medium inhibits the uptake of corticosterone. These results suggest that corticosterone is transported into the cell and is accumulated. Only the free hormone is available for uptake which in turn may be regulated by protein and lipid components in the plasma membrane of the liver cell.  相似文献   

2.
Receptors for α2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled α2-macroglobulin · trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8–9.0. The half-time for association was about 5 min at 37°C in contrast to about 5 h at 4°C. The half-saturation constant was about 100 pM at 4°C and 1 nM at 37°C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 ± 71 kDa (S.D., n = 7) for α2-macroglobulin · trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat α1-inhibitor-3 · chymotrypsin, a 210 kDa analogue which binds to the α2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55–60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked α2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-α1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]profane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400–500 kDa α2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

3.
Isolated, intact rat liver nuclei have high-affiity (Kd=10−9 M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4°C and rapidly lost at 37°C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25°C and 37°C than at 4°C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogenous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd=10−9 M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78±0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000×g, 30 min) contains high-capacity (955±405 (S.D.) fmol/mg protein), low-affinity (Kd=10.9±4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000×g, 60 min) contains low-capacity (46±15 (S.D.) fmol/mg protein), high-affinity (Kd=0.61± 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%–3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

4.
The Vmax of rat muscle mitochondrial CPT I toward the coenzyme A derivatives of 16:0, 16:1n-7, 18:1n-9, and 22:6n-3 were far lower than those recorded previously for this enzyme in rat liver at the same temperature (37°C). However, the Vmax of 7.0 nmol · min−1 · mg mitochondrial protein−1 for linoleoyl CoA (18:2n-6), which was the greatest recorded for the five acyl CoAs examined in muscle, was similar to that in liver. These comparisons presumably reflect a difference in the essential fatty acid requirements of these two rat tissues. Although the Vmax values for CPT I in the musculature of a lower vertebrate (larval lamprey) at 20°C were similar to those exhibited toward the coenzyme A derivatives of 16:0, 16:1n-7, 18:1n-9, and 22:6n-3 by the CPT I of rat musculature at 37°C, the corresponding Vmax toward 18:2n-6 (3.2 nmol · min−1 · mg mitochondrial protein−1) was lower. The latter relatively low activity may spare from oxidation this essential fatty acid, which is in low abundance in the diet of larval lampreys. Although the Vmax values toward the four nonessential fatty acids in larval lamprey muscle were similar to those in rat muscle, the corresponding K0.5 values were lower, thus indicating that the musculature of larval lampreys has a high capacity for energy generation through β-oxidation.  相似文献   

5.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

6.
The properties of PGE1-, PGE2- and iloprost (stable PGI2-analogue)-binding sites on normal human and rat liver surface cell membranes were investigated. The specific binding of [3H]PGE1 to human (rat) liver surface cell membranes could be displaced most effectively by unlabeled PGE1 (IC-50: 2.5±1.7, (6.1±2.1) μM) and the specific binding of [3H]PGE2 by unlabeled PGE2 (IC-50: 1.9±0.9 (2.0±0.8) μM. The Scatchard analysis on [3H]PGE1- as well as on [3H]ilioprost-binding was curvilinear whereas it was clearly linear on [3H]PGE2-binding in both the species. The high-affinity [3H]PGE1-sites showed a Bmax of 36.3±5.2 (21.3±4.3) fmol/mg protein and a Kd of 2.1±1.8 (1.9±0.7) nM, the low-affinity [3H]PGE1-sites a Bmax of 93.4±18.2 (86.1±13.2) fmol/mg protein and a Kd of 10.5±2.9 (15.3±3.2) nM. The high-affinity [3H]iloprost-sites exhibited a Bmax of 71.4±13.9 (35.9±8.2) fmol/mg protein and a Kd of 4.1±1.2 (1.7±1.8) nM, the low-affinity [3H]iloprost-sites a Bmax of 217.3±42.1 (142.9±17.8) fmol/mg protein and a Kd of 16.3±4.9 (9.2±7.2) nM. The [3H]PGE2-sites showed a Bmax of 135.4±51.9 (38.8±7.4) fmol/mg protein and a Kd of 16.2±3.2 (2.5±1.2) nM.It is assumed that prostaglandins of the E-series are promising substances in the regulation of human and rat liver function since liver cells are stable to bind reasonable amounts of these substances in a high affinity manner. However, interspecies differences in the affinity of the prostaglandins to their receptor-sites make it strange to assume that the same biological findings claimed several times for the rat liver are relevant for human too.  相似文献   

7.
The synthesis and pharmacology of 15 1-deoxy-Δ8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-Δ8-THC (5), 1-deoxy-Δ8-THC (6), 1-deoxy-3-butyl-Δ8-THC (7), 1-deoxy-3-hexyl-Δ8-THC (8) and a series of 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=0–4, 6, 7, where n=the number of carbon atoms in the side chain−2). Three derivatives (1719) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=1–5) have high affinity (Ki=<20 nM) for the CB2 receptor. Four of them (2, n=1–4) also have little affinity for the CB1 receptor (Ki=>295 nM). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC (2, n=2) has very high affinity for the CB2 receptor (Ki=3.4±1.0 nM) and little affinity for the CB1 receptor (Ki=677±132 nM).
Scheme 3. (a) (C6H5)3PCH3+ Br, n-BuLi/THF, 65°C; (b) LiAlH4/THF, 25°C; (c) KBH(sec-Bu)3/THF, −78 to 25°C then H2O2/NaOH.  相似文献   

8.
Summary Up to a SCN concentration of about 110mm, the concentration dependence of SCN equilibrium exchange in human red cell ghosts can be represented by the superimposition of two flux components. One component shows saturation kinetics, the other does not. The saturable component has an activation enthalpy of 105 kJ/mole, exhibits arans acceleration by Cl and can be inhibited by H2DIDS. The nonsaturable component has a much lower activation enthalpy of 33 kJ/mole, is slightly reduced intrans acceleration experiments with Cl and insensitive to H2DIDS but susceptible to inhibition by phloretin. At SCN concentrations exceeding 110mm, the saturable component undergoes irreversible self inhibition while the nonsaturable component remains unaltered.The half saturation concentration of the saturable flux component increases with decreasing pH from 3.0mm at pH 7.4 to 13.3mm at pH 6.0. Over this pH range, the maximal flux is only slightly increased from 19×10–12 to 22×10–12 moles×cm–2×sec–1. The nonsaturable flux component also increases slightly.In accordance with previous observations of Wieth (J. Physiol. (London) 207:563–580, 1970), we find that SCN increases K+ and Na+ permeability. The induced cation-permeability is considerably smaller than the SCN exchange and the latter does not show the paradoxical temperature dependence that is known to pertain to the former.  相似文献   

9.
125I-labelled pregnancy zone protein complex was injected intravenously in rats and after 6 min uptake into cells of the liver and spleen was determined by electron microscopic autoradiography. The liver took up 68% of the injected radioactivity; 61% was in the hepatocytes and 7% was in the liver macrophages (Kupffer cells). The spleen took up 3–4% and nearly all the radioactivity was in the macrophages of the red pulp. The uptake per cell volume was several times higher in the macrophage than in the hepatocyte. The radioactivity associated with macrophages was largely in endocytotic vacuoles and lysosomes. Binding of labelled pregnancy zone protein complex to peritoneal macrophages at 4°C was 2–3-times higher than binding of the homologous α2-macroglobulin complex. The two ligands competed for binding to the same receptors and the difference was due to a higher affinity of the pregnancy zone protein complex (Kd approx. 60 pM). After binding to the receptor, this ligand was internalised within 2–3 min at 37°C and radioactivity inside the cells largely represented intact pregnancy zone protein complex. Radioactivity was released from the cell as iodotyrosine after a lag time of about 10 min. It is concluded that pregnancy zone protein complex is bound with a high affinity to the α2-macroglobulin receptors in rat macrophages followed by receptor-mediated endocytosis and degradation of the ligand in the lysosomes.  相似文献   

10.
A sensitive and rapid method for measuring simultaneously adenosine, S-adenosylhomocysteine and S-adenosylmethionine in renal tissue, and for the analysis of adenosine and S-adenosylhomocysteine concentrations in the urine is presented. Separation and quantification of the nucleosides are performed following solid-phase extraction by reversed-phase ion-pair high-performance liquid chromatography with a binary gradient system. N6-Methyladenosine is used as the internal standard. This method is characterized by an absolute recovery of over 90% of the nucleosides plus the following limits of quantification: 0.25–1.0 nmol/g wet weight for renal tissue and 0.25–0.5 μM for urine. The relative recovery (corrected for internal standard) of the three nucleosides ranges between 98.1±2.6% and 102.5±4.0% for renal tissue and urine, respectively (mean±S.D., n=3). Since the adenosine content in kidney tissue increases instantly after the onset of ischemia, a stop freezing technique is mandatory to observe the tissue levels of the nucleosides under normoxic conditions. The resulting tissue contents of adenosine, S-adenosylhomocysteine and S-adenosylmethionine in normoxic rat kidney are 5.64±2.2, 0.67±0.18 and 46.2±1.9 nmol/g wet weight, respectively (mean±S.D., n=6). Urine concentrations of adenosine and S-adenosylhomocysteine of man and rat are in the low μM range and are negatively correlated with urine flow-rate.  相似文献   

11.
Progesterone is believed to act at the cell surface to induce the resumption of the meiotic divisions in amphibian oocytes. Analysis of [3H]- and [14C]progesterone uptake and exchange by the plasma-vitelline membrane complex, nucleus and cytoplasm of the isolated Rana oocyte indicates that progesterone uptake by the plasma membrane is saturable, specific and temperature-dependent, and has a slow off-rate. Estradiol (a noninducer) did not compete with progesterone, whereas testosterone (an inducer) blocked progesterone uptake by the membrane complex. Scatchard-type plots indicate an apparent Kd of 5.1·10−7 M over the [progesterone]o range of 0.01–1.0 μM with maximum binding at about 70 fmol per oocyte. Membrane uptake at higher [progesterone]o (2–40 μM) indicates apparent cooperative binding, with saturation up to 10 pmol per oocyte. Cytoplasmic uptake was apparently nonspecific and less temperature-dependent than membrane uptake and steroid concentrations (progesterone and pregnanediones) exceeded water solubility by 30–60 min. Nuclear uptake was saturable and specific but uptake was independent of temperature. A comparison of membrane binding and a physiological response (nuclear breakdown) indicated only about 10% of the membrane sites need be filled to initiate a 50% response.  相似文献   

12.
Macromolecular binding components for [3H]estradiol-17β are present to cytosol prepared from rabbit liver. When cytosol from sexually mature male liver was incubated with [3H]estradiol and analyzed for binding on low ionic strength sucrose gradients, two peaks of binding activity were detected. One peak had a sedimentation coefficient of 4–5 S and the other had a sedimentation coefficient of 8–9 S. The two components differed from each other regarding steroid specicity and various physiocochemical parameters. [3H]-estradiol binding to the 4–5 S component was not inhibited by estrogens, 5α-dihydrotestosterone, progesterone or cortisol. Binding to this component did not appera to be saturable and lavel was rapidly stripped from it by cahrcoal. Estradiol bindng to the 8–9 S component was estrogen specific, saturable and of high affinity. The specific binder dissociates on high ionic strength sucrose gradients and sediments as a 4–5 S moiety. The specific binding protein has a Kd of 3.05 · 10−10 M and a dissociation half-time of 33 h and there are 35.2 fmol of binding sites/mg cytosol protein. Estrogen binders are also present in liver cytosol from sexually mature female and sexually immature male rabbits. During prolonged incbuation of [3H]estradiol with mature male liver cytosol at 0–5°C polar metabolites of estradiol are produced.  相似文献   

13.
In a study of the possible mechanism of action of metaphit and phencyclidine in the brain, the uptake of glutamate at the luminal side of the blood-brain barrier (BBB) was studied by means of an in situ brain perfusion technique in normal guinea pigs and in those pretreated with metaphit. Metaphit, an isothiocyanate analog of phencyclidine (PCP), induces time-dependent epileptogenic changes in the electroencephalogram in guinea pig, reaching a maximum 18–24 h after metaphit administration (50 mg/kg IP). In metaphit-pretreated animals a significant reduction of glutamate BBB uptake was found, in comparison with that of controls. Reduction of glutamate transport from blood to brain ranged from 77% to 79% in all brain structures studied. This inhibition was probably due to changes in the properties of saturable components responsible for transport of glutamate across the BBB. Kinetic measurements revealed a saturable amino acid influx into the parietal cortex, caudate nucleus, and hippocampus, with a Km between 3.1 and 5.1 M, and the Vmax ranging from 14.3 to 27.8 pmol–1 g–1. The nonsaturable component, Kid, was statistically different from zero, ranging from 1.47 to 2.00 M min–1 g–1. Influx of glutamate into the brain was not altered in the presence of 1 mM D-aspartate, but it was significantly inhibited in the presence of 1 mM L-aspartate. We conclude that the cerebrovascular permeability of circulating glutamate is due to the presence of a higher-capacity saturable receptor and/or a carrier-mediated transport system (75%) and also a low-capacity diffusion transport system (25%) for the glutamate located at the luminal side of the BBB. The glutamate transport system is probably fully saturated at physiological plasma glutamate concentrations.  相似文献   

14.
The “two-step” low-temperature microscopy (equilibrium and dynamic) freezing methods and a differential scanning calorimetry (DSC) technique were used to assess the equilibrium and dynamic cell volumes in Rana sylvatica liver tissue during freezing, in Part I of this study. In this study, the experimentally determined dynamic water transport data are curve fit to a model of water transport using a standard Krogh cylinder geometry (Model 1) to predict the biophysical parameters of water transport: Lpg = 1.76 μm/min-atm and ELp = 75.5 kcal/mol for control liver cells and Lpg[cpa] = 1.18 μm/min-atm and ELp[cpa] = 69.0 kcal/mol for liver cells equilibrated with 0.4 M glucose. The DSC technique confirmed that R. sylvatica cells in control liver tissue do not dehydrate completely when cooled at 5°C/min but do so when cooled at 2°C/min. Cells also retained twice as much intracellular fluid in the presence of 0.4 M glucose than in control tissue when cooled at 5°C/min. The ability of R. sylvatica liver cells to retain water during fast cooling (≥5°C/min) appears to be primarily due to its liver tissue architecture and not to a dramatically lower permeability to water, in comparison to mammalian (rat) liver cells which do dehydrate completely when cooled at 5°C/min. A modified Krogh model (Model 2) was constructed to account for the cell–cell contact in frog liver architecture. Using the same biophysical permeability parameters obtained with Model 1, the modified Krogh model (Model 2) is used in this study to qualitatively explain the experimentally measured water retention in some cells during freezing on the basis of different volumetric responses by cells directly adjacent to vascular space versus cells at least one cell removed from the vascular space. However, at much slower cooling rates (1–2°C/h) experienced by the frog in nature, the deciding factor in water retention is the presence of glucose and the maintenance of a sufficiently high subzero temperature (≥−8°C).  相似文献   

15.
A simple and fast yet highly sensitive and specific method based on HPLC coupled to electrospray ionization mass spectrometry has been developed for the quantitation of corticosterone in rat plasma. After extraction of rat plasma (100 μl) with diethyl ether using 5-pregnen-3β-ol-20-one-16α-carbonitrile (Sigma) as internal standard, HPLC was performed on a short C8 column (Zorbax-Eclipse, 50×4.6 mm I.D.) using a steep methanol–water gradient (methanol 54% to 90% in 6 min). Detection was performed on a single quadruple mass spectrometer in selected ion monitoring mode (m/z 369 for corticosterone and 364 for the internal standard). The detection limit of the assay was 9 fmol (3 pg) of corticosterone on column. In vitro data were subjected to curve fitting (cubic, r2=0.9999). Recovery of corticosterone after extraction ranged from 81 to 93%. The relative standard deviations for intra- and inter-assay precision ranged from 0.8 to 3.6% and 5.2 to 12.9%, respectively. Corticosterone did not undergo any appreciable degradation when stored in plasma at −20°C for 2 months. The assay is routinely used in our laboratory to examine corticosterone levels as a marker of stress in rats and may also be used for the determination of 18-hydroxy-11-deoxycorticosterone.  相似文献   

16.
A highly sensitive HPLC method for the determination of prolyl dipeptides, Pro and Hyp in serum was developed. After deproteinization of serum and pretreatment with o-phthalaldehyde, the analytes were derivatized with 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride at 70°C for 10 min. The fluorescent derivatives of prolyl dipeptides, Pro and Hyp, were separated on tandem reversed-phase columns by a gradient elution at 55°C and detected by fluorescence measured at 318 nm (excitation) and 392 nm (emission). The detection limits for prolyl dipeptides were 2–5 fmol/injection (S/N=3). Pro–Hyp, Pro–Gly and Pro–Pro were identified as serum prolyl dipeptides. The within-day and between-day relative standard deviations were 1.5–7.9 and 2.4–10.8%, respectively. The recoveries were in the range of 90.8–97.3%. The concentrations of Pro–Hyp, Pro–Gly, Pro–Pro, Pro and Hyp in normal human serum (n=10) were 0.64±0.35, 0.078±0.047, 0.022±0.016, 177.0±43.0 and 11.1±3.5 μM, respectively. The concentrations of Pro–Hyp and Pro–Pro in serum of a patient with bone metastases of prostatic cancer were about three times and 50 times, respectively, higher than those in normal human serum.  相似文献   

17.
Receptors for porcine vasoactive intestinal peptide have been characterized in isolated epithelial cells of rat ventral prostate. The interaction of 125I-labelled VIP with cells was rapid, reversible, specific, saturable and dependent on temperature. Degradation of peptide and receptors was minimized at 15°C. At apparent equilibrium, the binding of 125I-labelled peptide was competitively inhibited by native VIP in the 1·10−10−10−7 M range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 4.0 nM and a low binding capacity (0.12 pmol VIP/mg cell protein), and a low-affinity class with a Kd = 17.8 nM and a high binding capacity (1.6 pmol VIP/mg cell protein). Chicken VIP and porcine secretin exhibited a 7-fold higher and a 7-fold lower affinity than porcine VIP for binding sites, respectively. Glucagon, Leu-enkephalin, Met-enkephalin and somatostatin were ineffective. The presence of high-affinity receptors for VIP together with previous reports on the occurrence of VIP-containing neurones innervating the male genitourinary tract strongly suggest that this peptide may be important in the physiological regulation of the functions of prostatic epithelium.  相似文献   

18.
Glucocorticoids are known to decrease intracellular ATP levels in the brain. This study was performed to investigate whether corticosterone at physiological levels depresses mitochondrial ATP production by directly acting on mitochondria. Mitochondria were isolated from immortalized hypothalamic GT1-7 neurons. ATP levels were determined using a luciferase–luciferin assay. When malate, α-ketoglutarate or pyruvate was used as a respiration substrate, corticosterone at ≥100 nM decreased ATP production by 10%. In contrast, corticosterone did not affect ATP production when succinate or N,N,N′,N′-tetramethyl-p-phenylenediamine + ascorbate were used. To investigate the specificity of corticosterone inhibition, we examined several steroids. All steroids tested suppressed mitochondrial ATP production by 10% at a concentration of 100 nM, in a manner similar to that of corticosterone. To examine the effects of corticosterone on GT1-7 cell physiology, we incubated GT1-7 cells with t-butyl hydroperoxide (t-BuOOH) with corticosterone. Corticosterone largely enhanced t-BuOOH-induced cell death. These results indicate that corticosterone non-specifically inhibits mitochondrial ATP production by suppressing electron transfer from NADH to the electron transfer chain through complex I. Partial inhibition of mitochondrial ATP production by corticosterone may contribute to oxidative stress-induced cell death.  相似文献   

19.
The uptake of the unnatural amino acid α-aminoisobutyric acid (AIB) and glutamine by developing soybean (Glycine max Merr. cv Chippewa 64) embryos was investigated. In freshly excised embryos, the accumulation ratio (cytoplasmic concentration/external concentration) of AIB did not exceed 1.0. After an 18-hour preincubation in nitrogen-free medium the accumulation ratio of AIB exceeded 4.5 at an external AIB concentration of 10 micromolar. This indicates the derepression of an active amino acid uptake mechanism operative at low external amino acid concentration. The presence of sucrose, NH4NO3, or glutamine during a 21-hour preincubation prior to measuring glutamine uptake inhibited the enhancement of uptake by 43%, 51%, and 96%, respectively. The time course of the decline in free amino acids and the time course of enhancement of amino acid uptake was not consistent with enhanced uptake resulting from relief of transinhibition, but suggested instead the derepression of synthesis of new carriers. The time course of enhancement of amino acid uptake was paralleled by an increase in glutamine-induced depolarization of the membrane potential. The kinetics of glutamine uptake indicated the presence of a saturable and a nonsaturable component of uptake. The saturable component of uptake is attributed to a mechanism of amino acid-H+ cotransport which is derepressed by nitrogen and/or carbon starvation. At physiological concentrations of amino acids, uptake through the saturable system in freshly excised embryos is negligible. Thus, uptake through the nonsaturable system is of primary importance in the nitrogen nutrition of developing soybean embryos.  相似文献   

20.
Purified phosphatidylcholine exchange protein from bovine liver was used to exchange rat liver microsomal phosphatidylcholine for egg phosphatidylcholine. It was found that at 25 and 37°C rat liver microsomal phosphatidylcholine was completely and rapidly available for replacement by egg phosphatidylcholine. In contrast, phosphatidylcholine in vesicles prepared from total microsomal lipids could only be exchanged for about 60%. At 8 and 0°C complex exchange kinetics were observed for phosphatidylcholine in rat liver microsomes. The exchange process had neither effect on the permeability of the microsomal membrane to mannose 6-phosphate, nor on the permeability of the phosphatidylcholine vesicles to neodymium (III) cations.Purified phospholipase A2 from Naja naja could hydrolyze some 55–60% of microsomal phosphatidylcholine at 0°C, but 70–80% at 37°C. Microsomal phosphatidylcholine, remaining after phospholipase treatment at 37°C, could be exchanged for egg phosphatidylcholine at 37°C, but at a slower rate than with intact microsomes. Microsomal phosphatidylcholine remaining after phospholipase treatment at 0 and 37°C had a lower content of arachidonic acid than the original phosphatidylcholine.These results are discussed with respect to the localization and transmembrane movement of phosphatidylcholine in liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号