首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been speculated that the control of core temperature is modulated by physiological demands. We could not prove the modulation because we did not have a good method to evaluate the control. In the present study, the control of core temperature in mice was assessed by exposing them to various ambient temperatures (Ta), and the influence of circadian rhythm and feeding condition was evaluated. Male ICR mice (n=20) were placed in a box where Ta was increased or decreased from 27 °C to 40 °C or to −4 °C (0.15 °C/min) at 0800 and 2000 (daytime and nighttime, respectively). Intra-abdominal temperature (Tcore) was monitored by telemetry. The relationship between Tcore and Ta was assessed. The range of Ta where Tcore was relatively stable (range of normothermia, RNT) and Tcore corresponding to the RNT median (regulated Tcore) were estimated by model analysis. In fed mice, the regression slope within the RNT was smaller in the nighttime than in the daytime (0.02 and 0.06, respectively), and the regulated Tcore was higher in the nighttime than in the daytime (37.5 °C and 36.0 °C, respectively). In the fasted mice, the slope remained unchanged, and the regulated Tcore decreased in the nighttime (0.05 and 35.9 °C, respectively), while the slopes in the daytime became greater (0.13). Without the estimating individual thermoregulatory response such as metabolic heat production and skin vasodilation, the analysis of the TaTcore relationship could describe the character of the core temperature control. The present results show that the character of the system changes depending on time of day and feeding conditions.  相似文献   

2.
We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats’ TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.  相似文献   

3.
Turkish hamsters (Mesocricetus brandti) are a model organism for studies of hibernation, yet a detailed account of their torpor characteristics has not been undertaken. This study employed continuous telemetric monitoring of body temperature (T b) in hibernating male and female Turkish hamsters at ambient temperatures (T as) of 5 and 13 °C to precisely characterize torpor bout depth, duration, and frequency, as well as rates of entry into and arousal from torpor. Hamsters generated brief intervals of short (<12 h), shallow test bouts (T b > 20 °C), followed by deep torpor bouts lasting 4–6 days at T a = 5 °C and 2–3 days at T a = 13 °C. Females at T a = 5 °C had longer bouts than males, but maintained higher torpor T b; there were no sex differences at T a = 13 °C. Neither body mass loss nor food intake differed between the two T as. Hamsters entered torpor primarily during the scotophase (subjective night), but timing of arousals was highly variable. Hamsters at both T as generated short, shallow torpor bouts between deep bouts, suggesting that this species may be capable of both hibernation and daily torpor.  相似文献   

4.
In this study, the hypothesis is tested that continuous increases in ambient temperature (Ta) during daytime would give elevated core and skin temperatures, and consequently better thermal sensation and comfort. Rectal temperature (Tre), skin temperatures and regional dry heat losses at 7 sites were continuously measured for 10 Japanese male subjects in three thermal conditions: cond. 1, stepwise increases in Ta from 26 °C at 9 h00 to 30 °C at 18 h00; cond. 2, steady Ta at 28 °C from 9 h00 to 18 h00 and cond. 3, stepwise decreases in Ta from 30 °C at 9 h00 to 26 °C at 18 h00. Oxygen consumption was measured and thermal sensation and comfort votes were monitored at 15 min intervals. Body weight loss was measured at 1 h intervals. While Tre increased continuously in the morning period in any condition, it increased to a significantly greater (p?<?0.05) 36.9?±?0.3 °C at 18 h00 in cond. 1 relative to 36.7?±?0.28 °C in Cond. 2 and 36.5?±?0.37 °C in cond. 3. Better thermal comfort was observed in the afternoon and the evening in Cond.1 as compared with the other 2 conditions. Thus, a progressive and appropriate increase in Ta may induce optimal cycle in core temperature during daytime, particularly for a resting person.  相似文献   

5.
1. The effects of hypohydration produced by 48 hr water deprivation were examined in dogs during moderate treadmill exercise at an ambient temperature (Ta) of 21°C.2. Hypohydration caused a significant elevation in plasma levels of adrenaline (A), proteins (pp) and osmolality (pOsm).3. During 1 hr of running, plasma concentrations of adrenaline (A) and noradrenaline (NA) rose significantly, whilst no change in these hormones occurred in dogs hydrated ad libitum.4. The results suggest that hypovolemia in the dog may be a sufficient stimulus to intensify the sympatho-adrenal response to moderate exercise performed at a room Ta.  相似文献   

6.
  • 1.1. Brain (hypothalamic), skin and body temperatures were measured in hand-reared acclimated (Acc, n = 5) and non-acclimated (NAcc, n =7) rock pigeons (Columba livia, mean body mass 237 g) exposed to increasing ambient temperatures (Ta) (30–60°C) and low humidities.
  • 2.2. In non-panting Acc birds, brain temperature gradually increased from 40.1 ± 0.4°C at 30°C to 41.2 ± 0.4°C at 60°C Ta. A mean body temperature (Tb) of 41.2 ± 0.2°C was measured at Ta up to 50°C; an increase of 1.1°C was observed at 60°C (Tb 42.2 ±0.6°C).
  • 3.3. In Acc panting birds exposed for 2 hr to 60°C, Thy was 41.9 ± 0.8°C and Ts was somewhat (but insignificantly) higher, i.e., 42.2 ± 0.7°C. It looks as if both values were increased as a result of a slight hyperthermia that developed (Tb = 43.5 ± 0.9°C).
  • 4.4. The significance of the present results for evaluating neuronal thermoresponsiveness of birds' hypothalamus is discussed.
  相似文献   

7.

Background

The thermoneutral zone (TNZ) is a species-specific range of ambient temperature (T a), at which mammals can maintain a constant body temperature with the lowest metabolic rate. The TNZ for an adult mouse is between 26 and 34 °C. Interestingly, female mice prefer a higher T a than male mice although the underlying mechanism for this sex difference is unknown. Here, we tested whether gonadal hormones are dominant factors controlling temperature preference in male and female mice.

Methods

We performed a temperature preference test in which 10-week-old gonadectomized and sham-operated male and female C57BL/6J mice were allowed to choose to reside at the thermoneutral cage of 29 °C or an experimental cage of 26, 29, or 32 °C.

Results

All mice preferred a T a higher than 26 °C, especially in the inactive phase. Choosing between 29 and 32 °C, female mice resided more at 32 °C while male mice had no preference between the temperatures. Hence, the preferred T a for female mice was significantly higher (0.9?±?0.2 °C) than that for male mice. However, gonadectomy did not influence the T a preference.

Conclusions

Female mice prefer a warmer environment than male mice, a difference not affected by gonadectomy. This suggests that thermal-sensing mechanisms may be influenced by sex-specific pathways other than gonadal factors or that the thermoregulatory set point has already been determined prior to puberty.
  相似文献   

8.
1. In pigeons given single intramuscular injection of naloxone, the heart rate (HR), breathing frequency (BF), oxygen consumption (VO2), cloacal temperature (Tc) and foot temperature (Tf) were monitored during gradual lowering of the ambient temperature (T,) from 34°C to 6° in 6 hr.2. The two doses of naloxone tested (2 mg and 5 mg/kg b.w.) had an inhibitory effect on HR, the effect being greater with the higher dose as well as with the fall in Ta.3. The higher dose showed a tendency to have a stimulatory effect on BF in Ta above 22°C and an inhibitory effect in Ta below 22°C. With the lower dose, BF remained unaltered except in Ta below 12°C during which it showed a trend toward a decrease.4. VO2 decreased with the higher dose, the extent of decrease being greater with drop in Ta. With the lower dose, VO2 was not affected at or below Ta 26°C, but showed a trend toward an increase at Ta above 26°.5. The higher dose produced hyperthermia when Ta was below 14°C, whereas with the lower dose, Tc showed no significant change except for a slight drop at Ta 6°C.6. Tfwas not significantly affected by naloxone treatment.7. It is suggested that these effects were caused by the inhibition of endorphine-mediated catecholamine release by naloxone.  相似文献   

9.
Temperature responses of the cockroach, Blaberus craniifer, to rapid changes of ambient temperature (Ta) have been studied. In static conditions at Ta = 27°C the body-to-ambient temperature difference was only 0.10 ± 0.07°C. Two test situations were used, either a ramp increase of Ta from 27 to 31°C (0.1°C/min) or “step” changes from 27 to 28°C and back (0.5°C/min). In both cases body temperature closely followed Newtonian model, the body time constants measured in various conditions being very similar: 543 ± 99 sec in ramp tests, 550 ± 68 sec and 542 ± 124 sec in rising and falling step tests respectively. It is concluded that in spite of evident differences between the cockroach and an inert solid, the Newtonian model adequately represents the thermal responses of this insect to moderate changes in ambient temperature.  相似文献   

10.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

11.
Different strategies for cooling the body prior to or during physical exercise have been shown to improve prolonged performance. Because of ethical and methodological issues, no studies conducted in humans have evaluated the changes in brain temperature promoted by cooling strategies. Therefore, our first aim sought to measure the hypothalamic temperature (Thyp) of rats subjected to treadmill running in a cold environment. Moreover, evidence suggests that Thyp and abdominal temperature (Tabd) are regulated by different physiological mechanisms. Thus, this study also investigated the dynamics of exercise-induced changes in Thyp and Tabd at two ambient temperatures: 25°C (temperate environment) and 12°C (cold). Adult male Wistar rats were used in these experiments. The rats were implanted with a guide cannula in the hypothalamus and a temperature sensor in the abdominal cavity. After recovery from this surgery, the rats were familiarized with running on a treadmill and were then subjected to the two experimental trials: constant-speed running (20 m/min) at 12°C and 25°C. Both Thyp and Tabd increased during exercise at 25°C. In contrast, Thyp and Tabd remained unchanged during fatiguing exercise at 12°C. The temperature differential (i.e., Thyp - Tabd) increased during the initial min of running at 25°C and thereafter decreased toward pre-exercise values. Interestingly, external cooling prevented this early increase in the temperature differential from the 2nd to the 8th min of running. In addition, the time until volitional fatigue was higher during the constant exercise at 12°C compared with 25°C. Together, our results indicate that Thyp and Tabd are regulated by different mechanisms in running rats and that external cooling affected the relationship between both temperature indexes observed during exercise without environmental thermal stress. Our data also suggest that attenuated hypothalamic hyperthermia may contribute to improved performance in cold environments.  相似文献   

12.
Seed germination is greatly influenced by both temperature (T) and water potential (ψ) and these factors largely determine germination rate (GR) in the field. Quantitative information about T and ψ effects on seed germination in lemon balm (Melisa officinalis L.) is scarce. The main objective of this study was to quantify seed germination responses of lemon balm to T and ψ, and to determine cardinal temperatures in a laboratory experiment. A segmented model was used to describe the effects of ψ (i.e., T) on GR and other germination parameters. The segmented model estimates were 7.2 °C for base (T b), 28.9 °C for optimum (T o), 40.1 °C for ceiling temperature (T c) and 1.64 physiological days (f o) (equivalent to a GRmax of 0.610 d?1 and a thermal time of 35.6 °C days) to reach 50 % maximum germination in the control (0 MPa) treatment (R 2 = 0.99, RMSE = 0.005 day?1). The inherent maximum rate of germination (days) was calculated by the [GRmax = 1/f o] model. ψ affected cardinal temperatures. From 0 to ?0.76 MPa, when ψ increased, T b was a constant 7.2 °C to ?0.38 MPa and increased linearly to 20.1 °C as ψ decreased. T o and f o increased linearly from 28.9 to 30 °C, and from 1.64 to 5.4 day?1, respectively as ψ decreased. However, there was no signification difference in T o as ψ decreased nor did T c decrease from 40.1 to 35 °C as ψ decreased. T b, T c and GRmax were the sole parameters affected by ψ and could be used to characterize differences between ψ treatments with respect to GR at various Ts. Therefore, the segmented model and its parameters can be used in lemon balm germination simulation models.  相似文献   

13.
  • 1.1. Resting metabolic rates (RMR) below thermoneutrality in adult hyrax acclimated to 26, 15 and 10°C remained unchanged, i.e. thermal conductance (K) remained constant.
  • 2.2. Conductance in juveniles decreased with acclimation to lower ambient temperatures (Ta).
  • 3.3. Body temperature (Tb) dropped by 3.8°C in adults exposed to Ta of 30 – 5°C. The decrease was constant.
  • 4.4. Body temperature fell by 1.5°C in juveniles exposed to Ta of 30 – 20°C but stabilized between 20 and 5°C.
  • 5.5. The labile Tb, associated with behavioural strategies and lower than predicted RMR, can be seen as an energy-conserving mechanism of particular importance during winter conditions.
  相似文献   

14.
 This study evaluates the effect of different levels of insulation on esophageal (T es) and rectal (T re) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). T es was similar at the start of exercise for each condition and baseline T re was ∼0.4°C higher than T es. The hourly equivalent rate of increase in T es during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise T es was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for T re was demonstrated, except that end-exercise T re for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in T es during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise T re decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition T re was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, T es is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than T re. Physiological mechanisms are discussed as possible explanations for the differences in response. Received: 30 June 1998 / Accepted: 19 February 1999  相似文献   

15.
16.
  • 1.1. Diurnal cycles of body temperature, Tb, and energy metabolism, M, at different ambient temperatures (Ta: +5 −+ 32°C) were tested in 13 sunbird species from various habitats and of different body masses (5.2–14.2 g) including one of the smallest passerines, Aethopyga christinae.
  • 2.2. Resting M-level (night) reaches Ta-dependent mean values of 54% (+5°C) and 49% (+25°C) of activity M-levels (day). Expected level is ca 75%.
  • 3.3. Resting metabolic rate of sunbirds lies within the range of theoretically expected values for birds.
  • 4.4. Mean linear metabolism-weight regression of the night values follows: M = 0.102 × W0.712 (M = energy metabolism in kJ/hr and W = body mass in g).
  • 5.5. Thermal conductances, Tc, are lower (−24%) than the predicted values. This is caused by a decrease of Tb at low Ta. Mean nocturnal Tc is 3.2 J/g × hr × °C, mean day-time value is 4.3 J/g × hr × °C.
  • 6.6. The zone of thermoneutrality is, in most species, within a Ta-range of 24–28°C.
  • 7.7. Normal day and night levels of Tb are in the same range as reported for other birds of the same weight class. Tb decreases slightly with falling Ta (partial heterothermia). Lowest recorded Tb was 34.2°C.
  • 8.8. No species tested showed any sign of torpor at night, independent of Ta, body mass or habitat origin.
  相似文献   

17.
Despite technological advances in thermal sensory equipment, few core temperature (TCORE) measurement techniques have met the established validity criteria in exercise science. Additionally, there is debate as to what method serves as the most practically viable, yet upholds the proposed measurement accuracy. This study assessed the accuracy of current and novel TCORE measurement techniques in comparison to rectal temperature (TREC) as a reference standard. Fifteen well-trained subjects (11 male, 4 female) completed 60 min of exercise at an intensity equating to the lactate threshold; measured via a discontinuous exercise test. TREC was significantly elevated from resting values (37.2±0.3 °C) at the end of moderate intensity exercise (39.6±0.04 °C; P=0.001). Intestinal telemetric pill (TPILL) temperature and temporal artery temperature (TTEM) did not differ significantly from TREC at rest or during exercise (P>0.05). However, aural canal temperature (TAUR) and thermal imaging temperature (TIMA) were both significantly lower than TREC (P<0.05). Bland Altman analysis revealed only TPILL was within acceptable limits of agreement (mean bias; 0.04 °C), while TTEM, TAUR and TIMA demonstrated mean bias values outside of the acceptable range (>0.27 °C). Against TREC, these results support the use of TPILL over all other techniques as a valid measure of TCORE at rest and during exercise induced hyperthermia. Novel findings illustrate that TIMA (when measured at the inner eye canthus) shows poor agreement to TREC during rest and exercise, which is similar to other ‘surface’ measures.  相似文献   

18.
In many mammalian species, variation in body temperature (Tb) exceeds the values suitable for defining homeothermy, making it justifiable and even necessary to resort to the term “heterothermic”. However, Tb data are only available for ca. 1% of extant mammalian species. We investigated variations in Tb in wild free-living and experimentally food-deprived yellow-necked mice Apodemus flavicollis, during the temperate-zone autumn-winter period. In line with the adaptive framework for endothermic thermoregulation, we hypothesised that Tb in the mice should be adjustable with the energetic cost-benefit trade-off associated with maintaining homeothermy. In laboratory conditions, mice clearly entered a state of daily torpor when food-deprived. Our study thus makes it clear that A. flavicollis is a heterothermic species in which food deprivation results in switching between endothermic and poikilothermic thermoregulation. We also assumed that, in free-living mice, heterothermy increases with elevated environmental challenges, e.g. when the ambient temperature (Ta) decreases. Consistent with this was the inverse correlation noted between variation in Tb in free-living mice and Ta, with most individuals clearly becoming torpid when Ta decreases below 0 °C. It is the increased cost of food hoarding under cold conditions that most likely triggers a state of torpor as a last result. Overall, our study indicates that yellow-necked mice can provide a further example of species sustaining an adaptive framework for endothermic thermoregulation.  相似文献   

19.
  • 1.1.|Colonic temperatures of BALB/c and CBA/J mice, golden hamsters, and Sprague-Dawley rats were taken immediately after exposure for 90 min to radiofrequency (RF) radiation.
  • 2.2.|Exposures were made in 2450 MHz (mouse and hamster) or 600 MHz (rat) waveguide exposure systems while the dose rate, specific absorption rate (SAR), was continuously recorded. Experiments were performed on naive, unrestrained animals at ambient temperatures (Ta) of 20 and 30°C.
  • 3.3.|Body mass and Ta) were found to be significant factors in influencing the threshold SAR for the elevation of colonic temperature. The threshold SARs at Ta's of 20 and 30°C were respectively: 27.5 and 12.1 W/kg for the BALB/c mouse; 40.7 and 8.5 W/kg for the CBA/J mouse; 8.7 and 0.61 W/kg for the golden hamster; and 1.58 and 0.4 W/kg for the Sprague-Dawley rat.
  • 4.4.|The relationship between threshold SAR or SAR for a 1.0°C elevation in colonic temperature vs body mass were linearly and inversely related on a double logarithmic plot. The results of this study suggest that the thermoregulatory sensitivity to RF radiation in these rodent species is heavily dependent on body mass and Ta.
  相似文献   

20.
Conversion of lactose into ethyl acetate by Kluyveromyces marxianus allows economic reuse of whey-borne sugar. The high volatility of ethyl acetate enables its process-integrated recovery by stripping. This stripping is governed by both the aeration rate and the partition coefficient, K EA,L/G. Cultivation at elevated temperatures should decrease the K EA,L/G value and thus favor stripping. K. marxianus DSM 5422 as a potent producer of ethyl acetate was cultivated aerobically in whey-borne media for studying temperature-dependent growth and ester formation. Shake flask cultivation proved thermal tolerance of this yeast growing from 7 to 47 °C with a maximum rate of 0.75 h?1 at 40 °C. The biomass yield was 0.41 g/g at moderate temperatures while low and high temperatures caused distinct drops. The observed μ-T and Y X/S-T dependencies were described by mathematical models. Further cultivations were done in an 1-L stirred reactor for exploring the effect of temperature on ester synthesis. Cultivation at 32 °C caused significant ester formation (Y EA/S?=?0.197 g/g) while cultivation at 42 °C suppressed ester synthesis (Y EA/S?=?0.002 g/g). The high temperature affected metal dissolution from the bioreactor delivering iron for yeast growth and preventing ester synthesis. Cultivation at 32 °C with a switch to 42 °C at the onset of ester synthesis allowed quick and efficient ester production (Y EA/S?=?0.289 g/g). The high temperature lowered the K EA,L/G value from 78 to 44 L/L which heightened the gas-phase ester concentration (favoring ester recovery) without increasing the liquid-phase concentration (avoiding product inhibition).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号