首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Synonymous codon usage varies widely between genomes, and also between genes within genomes. Although there is now a large body of data on variations in codon usage, it is still not clear if the observed patterns reflect the effects of positive Darwinian selection acting at the level of translational efficiency or whether these patterns are due simply to the effects of mutational bias. In this study, we have included both intra-genomic and inter-genomic comparisons of codon usage. This allows us to distinguish more efficiently between the effects of nucleotide bias and translational selection.

Results

We show that there is an extreme degree of heterogeneity in codon usage patterns within the rice genome, and that this heterogeneity is highly correlated with differences in nucleotide content (particularly GC content) between the genes. In contrast to the situation observed within the rice genome, Arabidopsis genes show relatively little variation in both codon usage and nucleotide content. By exploiting a combination of intra-genomic and inter-genomic comparisons, we provide evidence that the differences in codon usage among the rice genes reflect a relatively rapid evolutionary increase in the GC content of some rice genes. We also noted that the degree of codon bias was negatively correlated with gene length.

Conclusion

Our results show that mutational bias can cause a dramatic evolutionary divergence in codon usage patterns within a period of approximately two hundred million years.The heterogeneity of codon usage patterns within the rice genome can be explained by a balance between genome-wide mutational biases and negative selection against these biased mutations. The strength of the negative selection is proportional to the length of the coding sequences. Our results indicate that the large variations in synonymous codon usage are not related to selection acting on the translational efficiency of synonymous codons.
  相似文献   

2.
Three types of mackerel,Scomber species, the typical spotted, non-spotted and their intermediate types collected from three locations in the adjacent waters of Japan were analyzed by starch gel electrophoresis and examined for some morphometric and meristic characters. Clear genetic differences between the typical spotted and non-spotted were observed at six loci, i.e.αGpd-B, Idh-A, Ldh-A, Sod, Hem-1 andHem-2, out of the 23 loci examined. The intermediate individuals genetically belong to either the spotted or non-spotted type and a genetical hybrid possessing both kinds of allele from the two typical types was not observed at all. These three types could be divided into two groups. Average genetic distances for intra- or inter groups were estimated as 0.006 and 0.414, respectively. Two morphological characters, the length of separated anal spine and the number of interneurai spines associated with the first dorsal fin spine, were found to be significant character separating the two groups. From the above results, the two groups of mackerel were clearly divided into two separate species,Scomber australasicus andS. japonicus.  相似文献   

3.
4.
5.
6.
7.
Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew.  相似文献   

8.
Suppression of tumorigenesis is considerably more stringent in the human than in the much shorter lived mouse species, and the reasons for this difference are poorly understood. We investigated functional differences in the control of the ARF (alternative reading frame) protein that acts upstream of p53 and is encoded along with p16(INK4a) at a major tumor suppressor locus in both the human and mouse genomes. The mouse and human ARF proteins are substantially divergent at their carboxyl termini. We have shown that the mouse ARF protein (p19ARF) interacts with Pex19p in the cell cytoplasm leading to its nuclear exclusion and repression of its p53 activation function. The human ARF protein (p14ARF) is substantially smaller than its mouse counterpart and is not subject to this functional inactivation by Pex19p. In an identical cellular background, ribozymes directed against Pex19p enhanced p19ARF- but not p14ARF-activated p53 function. This is the first demonstration of a functional difference between the mouse and human ARF proteins. In view of the major role of ARF in tumor suppression, this distinction may contribute to the different levels of tumor proneness of these species.  相似文献   

9.
On the divergence of genes in multigene families   总被引:2,自引:0,他引:2  
Statistical properties of the amount of divergence of genes in multigene families are studied. The model considered is an infinite-site neutral model with unbiased intrachromosomal conversion, unbiased interchromosomal conversion, and recombination. By considering the time back to the most recent common ancestor of two genes, both the probability of identity and the moments of S, the number of sites that differ between two sampled genes, are obtained. We find that if recombination rates are large or conversion is always interchromosomal, then the expectation of S is 4N mu n where N is the population size, mu is the rate of mutation per generation per gene and n is the number of genes in the gene family, as the conversion rates approach zero, the moments of divergence do not approach the moments of divergence with conversion rates equal to zero, and it is possible for a decrease in the rate of intrachromosomal conversion to result in a higher probability of identity, but a greater mean divergence of the two genes.  相似文献   

10.
11.
12.
13.
Roads and highways represent one of the most important anthropogenic impacts on natural areas and contribute to habitat fragmentation, because they are linear features that can inhibit animal movement, thereby causing barrier effects subdividing the populations adjacent to the roads. The paper examines to what extent a narrow (2-lane) and a wide (4-lane) highways represent barriers for two small mammal species: bank volesClethrionomys glareolus Schreber, 1780 and yellow-necked miceApodemus flavicollis Melchior, 1834, and whether displaced rodents are able to return across roads of different widths. The study was performed at four sites in the Czech Republic. The capture-mark-recapture method was used to determine crossing rates. At two sites, the animals captured close to the road were transferred to the other side and released, to compare return movements across the roads with the movements made by the non-transferred animals. We found that the narrow highway did not prevent movement of neither of the species, although voles crossed only after they had been transferred. Wide highways, on the other hand, completely prevened crossing of both species. While the narrow highways acted at individuals level, the wide highways affected the population subvision.  相似文献   

14.
The spatial scale over which genetic divergences occur between populations and the extent that they are paralleled by morphological differences can vary greatly among marine species. In the present study, we use a hierarchical spatial design to investigate genetic structure in Heliocidaris erythrogramma occurring on near shore limestone reefs in Western Australia. These reefs are inhabited by two distinct subspecies: the thick‐spined Heliocidaris erythrogramma armigera and the thin‐spined Heliocidaris erythrogramma erythrogramma, each of which also have distinct colour patterns. In addition to pronounced morphological variation, H. erythrogramma exhibits a relatively short (3–4 days) planktonic phase before settlement and metamorphosis, which limits their capacity for dispersal. We used microsatellite markers to determine whether patterns of genetic structure were influenced more by morphological or life history limitations to dispersal. Both individual and population‐level analyses found significant genetic differentiation between subspecies, which was independent of geographical distance. Genetic diversity was considerably lower within H. e. erythrogramma than within H. e. armigera and genetic divergence was four‐fold greater between subspecies than among populations within subspecies. This pattern was consistent even at fine spatial scales (< 5 km). We did detect some evidence of gene flow between the subspecies; however, it appears to be highly restricted. Within subspecies, genetic structure was more clearly driven by dispersal capacity, although weak patterns of isolation‐by‐distance suggest that there may be other factors limiting gene exchange between populations. Our results show that spatial patterns of genetic structure in Western Australian H. erythrogramma is influenced by a range of factors but is primarily correlated with the distribution of morphologically distinct subspecies. This suggests the presence of reproductive barriers to gene exchange between them and demonstrates that morphological variation can be a good predictor of genetic divergence. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 578–592.  相似文献   

15.
This study examined the patterns of morphological variation both between species, and between sexes and among populations within each species of the Mexican sailfin mollies, Poecilia velifera and Poecilia petenensis , using geometric morphometrics and linear measurements of morphological traits. While sexes within each species differed in characteristics that may be important in sexual selection, such as length of the dorsal fin, species differed in traits, such as body depth, that may also be influenced by natural selection due to differences in habitats. Within each species, many morphological traits were similar among populations, but important differences, including caudal peduncle depth in P. petenensis (but not in P. velifera ), suggested that habitat differences may also be important in shaping population divergence independently within each species. Indeed, the evolutionary vectors of male morphological population divergence for each species differed by an angle of 98·5°, representing nearly orthogonal vectors and suggesting independent shape divergence between these two molly species. Finally, geographic isolation did not explain the morphological differentiation seen among populations, suggesting that natural and sexual selection were strong forces promoting morphological diversification within these two species, despite the potential for a high degree of population connectivity and gene flow.  相似文献   

16.
Murid gammaherpesvirus 4 (MuHV-4) is widely used as a small animal model for understanding gammaherpesvirus infections in man. However, there have been no epidemiological studies of the virus in wild populations of small mammals. As MuHV-4 both infects cells associated with the respiratory and immune systems and attempts to evade immune control via various molecular mechanisms, infection may reduce immunocompetence with potentially serious fitness consequences for individuals. Here we report a longitudinal study of antibody to MuHV-4 in a mixed assemblage of bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus) in the UK. The study was conducted between April 2001 and March 2004. Seroprevalence was higher in wood mice than bank voles, supporting earlier work that suggested wood mice were the major host even though the virus was originally isolated from a bank vole. Analyses of both the probability of having antibodies and the probability of initial seroconversion indicated no clear seasonal pattern or relationship with host density. Instead, infection risk was most closely associated with individual characteristics, with heavier males having the highest risk. This may reflect individual variation in susceptibility, potentially related to variability in the ability to mount an effective immune response.  相似文献   

17.
The rapid evolution of traits related to fertilization such as sperm morphology may be pivotal in the evolution of reproductive barriers and speciation. The sea urchin Strongylocentrotus droebachiensis has a circumarctic distribution and shows substantial genetic subdivision between northeastern Atlantic populations and northwestern Atlantic and Pacific populations. Using transmission electron microscopy, we show here that sperm shape, size, and ultrastructure differ markedly among populations of S. droebachiensis from different oceans and reflect patterns of genetic divergence. Sperm nuclei from northwestern Atlantic and Pacific populations were longer and narrower than those from the northeastern Atlantic. We additionally demonstrate population-level differences in the amount and location of filamentous actin (F-actin) prior to the occurrence of the acrosome reaction. Sperm from Pacific and northwest Atlantic populations differed from that of all other echinoids examined in that intact sperm contains a partly preformed acrosomal process, a structure more closely resembling the acrosomal rod seen in some molluscs. Immunofluorescent studies using anti-bindin antibodies and the F-actin-specific stain phalloidin confirmed these findings. Divergence of reproductive traits such as sperm morphology may be related to divergence in gamete compatibility and genetic divergence, and could represent the first stages of speciation in free-spawning marine invertebrates.  相似文献   

18.
This report presents the results of an investigation designed to establish whether exposure of mice to ultraviolet radiation (UVR) is capable of influencing the factors that control the distribution of lymphoid cells in vivo. We found that such exposure resulted in a dramatic and long-lasting increase in the tropism of peripheral lymph nodes for circulating lymphoid cells. Termination of UVR exposure did not result in a reversal of this phenomenon. Since an increase in lymphocyte migration into the lymph nodes of UVR-exposed mice was apparent within 2 hr of infusion of the radiolabeled cells, we conclude that the homing assay data reflect a relatively increased binding of circulating lymphocytes to high endothelial venules (HEV) within the lymph nodes of irradiated animals. A histologic analysis of skin from UVR-exposed mice established that the dermal microvasculature had expanded in terms of size and number of vessels, a condition that also does not completely reverse after the termination of treatments. In spite of the increase in dermal microvasculature, very few inflammatory cells were detected in the irradiated skin site. These observations support our conclusion that the enhanced traffic of lymphocytes into peripheral lymph nodes of UVR-exposed mice occurs primarily via lymphocyte-HEV interactions rather than afferent drainage of the irradiated skin.  相似文献   

19.
The diversity of tooth location in teleost fishes provides an excellent system for comparing genetic divergence between teeth in different species (phylogenetic homologs) with divergence between teeth within one species (iterative homologs). We have chosen to examine the expression of three members of the bone morphogenetic protein (Bmp) family because they are known to play multiple roles in tooth development and evolution in tetrapod vertebrates. We characterized expression of Bmp2a, Bmp2b, and Bmp4 during the development of oral and pharyngeal dentitions in three species of teleost fishes, the zebrafish (Danio rerio), Mexican tetra (Astyanax mexicanus), and Japanese medaka (Oryzias latipes). We found that expression in teleosts is generally highly conserved, with minor differences found among both iteratively homologous and phylogenetically homologous teeth. Expression of orthologous genes differs in several ways between the teeth of teleost fishes and those of the mouse, but between these vertebrate groups the summed expression pattern of Bmp genes is highly conserved. Significantly, the toothless oral region of the zebrafish lacks Bmp expression domains found in teleosts with oral teeth, implicating these genes in evolutionary tooth loss. We conclude that Bmp expression has been largely conserved in vertebrate tooth development over evolutionary time, and that loss of Bmp expression is correlated with region-specific loss of the dentition in a major group of fishes.  相似文献   

20.
Scent marks are important mediators of territorial behaviour and sexual selection, especially among mammals. The evolution of compounds used in scent marks has the potential to inform our understanding of signal evolution in relation to social and sexual selection. A major challenge in studies of chemical communication is that the link between semiochemical compounds and genetic changes is often unclear. The major urinary proteins (MUPs) of house mice provide information on sex, status and individual identity. Importantly, MUPs are a direct protein product of genes, providing a clear link between genotype and phenotype. Here, we examine the evolution of urinary protein signals among house mice and relatives by examining the sequences and patterns of mRNA expression of Mup genes related to urinary scent marks. MUP patterns have evolved among mouse species both by gene duplication and variation in expression. Notably, protein scent signals that are male specific in well‐studied inbred laboratory strains vary in sex‐specificity among species. Our data reveal that individual identity signals in MUPs evolved prior to 0.35 million years ago and have rapidly diversified through recombining a modest number of amino acid variants. Amino acid variants are much more common on the exterior of the protein where they could interact with vomeronasal receptors, suggesting that chemosensory perception may have played a major role in shaping MUP diversity. These data highlight diverse processes and pressures shaping scent signals, and suggest new avenues for using wild mice to probe the evolution of signals and signal processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号