首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monoclonal antibodies were raised against the synaptosomal plasma membranes (SPMs) purified from the electric organ of the Torpedo. One antibody that reacts preferentially with SPMs rather than with other membrane fractions isolated from this tissue was previously found to inhibit hydrophilic and amphiphilic choline-O-acetyltransferase (ChAT) activity. On immunoblots of SPMs, this antibody recognizes two polypeptides of 135 and 66 kilodaltons that are related; the 66-kilodalton polypeptide appears to exist as a monomer and as a dimer in SPMs. The antibody was also able to inhibit the calcium-dependent release of acetylcholine in Torpedo synaptosomes without affecting the total neurotransmitter content. This inhibition was dependent on the antibody concentration and was observed when the release was elicited by either KCl depolarization or the calcium ionophore A23187; this suggests that inhibition was not mediated by a blockage of the depolarization-activated calcium influx. The inhibition could not be prevented by atropine, a result indicating that the antibody does not block release by mimicking the action of acetylcholine on presynaptic muscarinic autoreceptors. Thus, the antigen recognized by this antibody appeared to be involved in acetylcholine release; this antigen could be membrane-bound ChAT, another protein of the SPMs, or both.  相似文献   

2.
The effect of ionic permeability changes on acetylcholine (ACh) release from isolated cholinergic synaptic vesicles of Torpedo was studied using a chemiluminescent method for continuous ACh detection. Vesicles rendered freely permeable to potassium by valinomycin lost most of their ACh content in K+ media, if the accompanying anion was permeant; it thus appeared that ACh leakage occurred as the result of internal osmotic changes. Upon addition of ionophores that catalyse monovalent cation/H+ exchange (gramicidin D or a mixture of valinomycin plus protonophore FCCP), a rapid but transient ACh release was observed. Surprisingly, nigericin which also catalyses K+/H+ exchange, had no effect on ACh release. The divalent cation ionophore A23187 promoted ACh release only when calcium (and not magnesium) was introduced into the external medium in a millimolar concentration range. As the simultaneous addition of the protonophore FCCP and A23187 decreased this calcium-dependent ACh leakage, a releasing effect of A23187 through Ca2+/H+ exchange is suspected. The present results emphasise the role of internal protons for ACh retention inside synaptic vesicles.  相似文献   

3.
Abstract: Stably transfected cells expressing mouse choline acetyltransferase (ChAT) cDNA were established, and the synthesis and release of acetylcholine (ACh) were examined. A cDNA clone coding for mouse ChAT was inserted into an expression vector (pEF321) containing a promoter for human elongation factor 1α to construct pEFmChAT. Neuronal (NG108-15, NS20Y, N1E115, and Neuro2A) and nonneuronal cell lines (L cells and NIH3T3) were transfected with pEFmChAT, and the cell lines that stably expressed high ChAT activity were selected. These cells expressed the 66-kDa ChAT protein and accumulated ACh mostly in the cytosol. The concentration of intracellular ACh in the cells increased upon raising the choline level in the medium. The cells continuously released ACh in a Ca2+-independent fashion. Neither high K+ nor calcium ionophore stimulated release of ACh from the cells.  相似文献   

4.
The phospholipase D of the rat brain synaptic membrane possesses the highest activity of this enzyme of any mammalian tissue examined. The synaptic phospholipase D activity is latent and barely detectable in the absence of 4 mM sodium oleate. Several other fatty acids were either less effective or ineffective as stimulators of activity compared to this monounsaturated fatty acid. The activity was decreased by hemicholinium-3, an inhibitor of choline uptake and slightly activated by neostigmine, an acetylcholinesterase inhibitor. Incubation of synaptosomes in the presence of sodium oleate and acetyl-coenzyme A resulted in the formation of a product chromatographing with acetylcholine. Acetylcholine formation was nearly undetectable in the absence of sodium oleate or acetyl-coenzyme A. These results implicate synaptosomal phospholipase D in releasing choline from phosphatidylcholine for acetylcholine formation.  相似文献   

5.
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Human Retinas Synthesize and Release Acetylcholine   总被引:2,自引:1,他引:1  
Human retinas have the capacity to synthesize and release [3H]acetylcholine ([3H]ACh) after an incubation in [3H]choline ([3H]Ch). Synthesis of [3H]Ch by retinal homogenates was determined using either high-voltage paper electrophoresis (HVPE) or a two-step enzymatic/extraction assay for separating [3H]ACh from [3H]Ch. The enzymatic/extraction assay is shown to be accurate over a wide range of concentrations (10(-6)-10(-12) M). Homogenates of human retina synthesize [3H]ACh from [3H]Ch. We find an approximate Km of 50 microM and a Vmax of about 20 nmol/mg protein/h (at 37 degrees C) for the synthesis of labeled ACh by retinal homogenates. Human retinas also release [3H]ACh after a pulse of [3H]Ch. Release of labeled transmitter is stimulated by potassium depolarization. The potassium-stimulated release is partially blocked by magnesium or cobalt ions. Release data were analyzed by both the enzymatic/extraction assay and HVPE; the results are qualitatively identical in both cases. The data reported here provide additional evidence for cholinergic neurotransmission in the human retina.  相似文献   

7.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

8.
Abstract: The characteristic pathological features of the postmortem brain of Alzheimer's disease (AD) patients include, among other features, the presence of neuritic plaques composed of amyloid β-peptide (Aβ) and the loss of basal forebrain cholinergic neurons, which innervate the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Aβ accumulation in vivo may initiate and/or contribute to the process of neurodegeneration and thereby the development of AD. However, the mechanisms by which Aβ peptide influences/causes degeneration of the basal forebrain cholinergic neurons and/or the cognitive impairment characteristic of AD remain obscure. Using in vitro slice preparations, we have recently reported that Aβ-related peptides, under acute conditions, potently inhibit K+-evoked endogenous acetylcholine (ACh) release from hippocampus and cortex but not from striatum. In the present study, we have further characterized Aβ-mediated inhibition of ACh release and also measured the effects of these peptides on choline acetyltransferase (ChAT) activity and high-affinity choline uptake (HACU) in hippocampal, cortical, and striatal regions of the rat brain. Aβ1–40 (10?8M) potently inhibited veratridine-evoked endogenous ACh release from rat hippocampal slices and also decreased the K+-evoked release potentiated by the nitric oxide-generating agent, sodium nitroprusside (SNP). It is interesting that the endogenous cyclic GMP level induced by SNP was found to be unaltered in the presence of Aβ1–40. The activity of the enzyme ChAT was not altered by Aβ peptides in hippocampus, cortex, or striatum. HACU was reduced significantly by various Aβ peptides (10?14 to 10?6M) in hippocampal and cortical synaptosomes. However, the uptake of choline by striatal synaptosomes was altered only at high concentration of Aβ (10?6M). Taken together, these results indicate that Aβ peptides, under acute conditions, can decrease endogenous ACh release and the uptake of choline but exhibit no effect on ChAT activity. In addition, the evidence that Aβ peptides target primarily the hippocampus and cortex provides a potential mechanistic framework suggesting that the preferential vulnerability of basal forebrain cholinergic neurons and their projections in AD could relate, at least in part, to their sensitivity to Aβ peptides.  相似文献   

9.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

10.
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process.  相似文献   

11.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

12.
The Role of Chloride in Acetylcholine Metabolism   总被引:1,自引:1,他引:0  
Abstract: The chloride dependence of acetylcholine (ACh) synthesis and release and of choline uptake was studied in synaptosomal preparations from rat brain. The substitution of propionate for chloride, in the presence of 35 m m -potassium, lowered the ACh content of the synaptosomes. However, in the presence of 5 m m -potassium, the ACh level in synaptosomes was reduced, but significantly less so. Propionate had no effect on choline acetyltransferase (EC 2.3.1.6) activity when measured in a standard chloride-containing medium. In the presence of propionate, the spontaneous release of ACh was unchanged, but potassium-stimulated release of ACh was markedly reduced as compared with a chloride-containing medium. The synthesis of ACh, as measured by the net increase in the amount of ACh in the synaptosomes and that released to the medium, was reduced with propionate at 5 m m -potassium and was totally inhibited when the potassium concentration was increased to 35 m m . Choline uptake studies revealed that with propionate only a low-affinity component of the choline transport system existed. Further, the V max was markedly reduced when the potassium concentration was increased to 35 m m . The results suggest that under certain conditions choline transported by a low-affinity system might provide a substantial source of choline for ACh synthesis.  相似文献   

13.
Abstract : The mechanisms regulating the compartmentation of acetylcholine (ACh) and the relationship between transmitter release and ACh stores are not fully understood. In the present experiments, we investigated whether the inhibitors of serine/threonine phosphatases 1 and 2A, calyculin A and okadaic acid, alter subcellular distribution and the release of ACh in rat hippocampal slices. Calyculin A and okadaic acid significantly (p < 0.05) depleted the occluded ACh of the vesicular P3 fraction, but cytoplasmic ACh contained in the S3 fraction was not significantly affected. The P3 fraction is known to be heterogeneous ; calyculin A and okadaic acid reduced significantly (p < 0.05) the amount of ACh recovered with a monodispersed fraction (D) of synaptic vesicles, but the other nerve terminal bound pools (E-F and G-H) were not so affected. K+-evoked ACh release decreased significantly (p < 0.01) in the presence of calyculin A and okadaic acid, suggesting that fraction D's vesicular store of ACh contributes to transmitter release. The loss of ACh from synaptic vesicle fractions prepared from tissue exposed to phosphatase inhibitors appeared not to result from a reduced ability to take up ACh. Thus, when tissue was allowed to synthesize [3H]ACh from [3H]choline, the ratio of [3H]ACh in the S3 to P3 fractions was not much changed by exposure of tissue to calyculin A or okadaic acid ; furthermore, the specific activity of ACh recovered from the D fraction was not reduced disproportionately to that of cytosolic ACh. The changes are considered to reflect reduced synthesis of ACh by tissue treated with the phosphatase inhibitors, rather than an effect on vesicle uptake mechanisms. Thus, exposure of tissue to calyculin A or okadaic acid appears to produce selective depletion of tissue ACh content in a subpopulation of synaptic vesicles, suggesting that phosphatases play a role in ACh compartmentation.  相似文献   

14.
Abstract: The potential ability of Al to affect cholinergic transmission was studied on synaptosomal fractions of rat brain incubated with pyruvate in depolarizing medium containing 30 m M K+. Addition of 1 m M Ca caused a 266% increase in the acetylcholine (ACh) release despite decreased pyruvate oxidation. Under these conditions, 0.25 m M Al did not affect pyruvate oxidation but raised mitochondrial and decreased synaptoplasmic acetyl-CoA. Simultaneously, a 61% inhibition of Ca-evoked ACh release was observed. Verapamil (0.1 and 0.5 m M ) decreased the acetyl-CoA concentration in synaptoplasm and inhibited ACh release. Al (0.012 m M ) partially reversed these inhibitory effects. Omission of Pi from the medium abolished suppressive effects of Al on acetyl-CoA content and Ca-evoked transmitter release. We conclude that the Al(PO4)OH complex may be the active form of Al, which, by interaction with the verapamil binding sites of Ca channels, is likely to restrict the Ca influx to the synaptoplasm. This may inhibit the provision of acetyl-CoA to the synaptoplasm as well as the Ca-evoked ACh release. One may suppose that excessive accumulation of Al in some encephalopathic brains may, by this mechanism, suppress still-surviving cholinergic neurons and exacerbate cognitive deficits caused by already-existing structural losses in the cholinergic system.  相似文献   

15.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. These terminals possessed both high- (KT = 2.7 microM) and low- (KT = 58 microM) affinity uptake mechanisms for exogenous [3H]choline. The proportion of [3H]choline acetylated was reduced from 75 to 30% under conditions of anoxia and hypoglycaemia, whereas the phosphorylation of choline increased from 4 to 52%. Choline phosphorylation was also increased when the terminals were preloaded with choline. The affinity-purified terminals were shown to release acetylcholine in a Ca2+-dependent manner on depolarization. The relationship between choline acetylation and phosphorylation in the cholinergic nerve terminal is discussed.  相似文献   

16.
Rat choline acetyltransferase (ChAT) has been expressed at a high level in Spodoptera frugiperda Sf9 cells using a baculovirus expression system. A cDNA containing the coding sequence for ChAT was inserted into the transfer vector pAcYM1 to yield the recombinant vector pAcYM1/ChAT. Sf9 cells were then coinfected with pAcYM1/ChAT and the wild-type Autographa californica virus. One recombinant virus particle, containing the cDNA for ChAT, was selected that expressed a protein of 68.5 kDa. Forty hours after infection of cells with the recombinant virus, the specific activity of ChAT in the cytosol was 190 nmol of acetylcholine/min/mg of protein, accounting for approximately 24% of the cell cytosolic proteins as being ChAT. The apparent Km values of the enzyme for choline and acetyl-CoA were 299 and 221 microM, respectively, whereas the respective Vmax values were 10.6 and 11.4 mumol of acetylcholine/min/mg of protein. In addition, analysis of the protein revealed that ChAT is phosphorylated in Sf9 cells. About 0.5 mg of ChAT was obtained from a one-step purification procedure starting with 10(8) infected Sf9 cells. Addition of choline to the incubation medium led to accumulation of high amounts of acetylcholine in the cytosol of the infected cells. The neurotransmitter was not released by Sf9 cells in response to membrane depolarization or on ionophore-mediated calcium entry. Some acetylcholine, which most likely originated from cell death inherent to viral infection, accumulated in the culture medium. The infected insect cells, which synthesize and store neurotransmitter, provide a new and convenient model for analyzing synaptic transmission at the molecular level.  相似文献   

17.
The main objective of these studies was to determine whether the acute administration of choline to rats provides supplemental precursor that can be used to support acetylcholine synthesis when the demand for choline is increased by increasing neurotransmitter release. For these experiments, hippocampal and striatal slices were prepared form rats that had received saline or an acute injection of choline. Slices were incubated in a choline-free buffer containing 4.74-35 mM KCl, and acetylcholine synthesis and release and choline production were measured. The initial tissue contents of acetylcholine and choline did not differ between experimental groups for either brain region. When hippocampal slices from the controls were incubated for 10 min with depolarizing concentrations of KCl, acetylcholine release increased and the tissue content decreased in a concentration-dependent fashion; no net synthesis of acetylcholine occurred. In contrast, hippocampal slices from the choline-injected animals maintained their tissue content in the presence of high concentrations of KCl, despite an increase in acetylcholine release that was similar in magnitude to that of the controls; positive net synthesis of acetylcholine resulted. Although the molar concentration of choline achieved in the incubation media at the end of the 10-min period did not differ between groups, the mobilization of free choline from bound stores was significantly greater in hippocampal slices from the choline-injected group than the controls. In addition, the synthesis of acetylcholine by hippocampal slices from the choline-injected group was prevented by the presence of hemicholinium-3 (1 microM) in the media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract: The experiments described in this paper were designed to test whether increasing choline availability over normal physiological levels increases acetylcholine synthesis in the cat's superior cervical ganglion. When ganglia were perfused with Krebs solution, an increase in the medium's choline concentration over physiological (10−3M) levels increased tissue choline but did not increase tissue acetylcholine or the release of acetylcholine from stimulated ganglia. However, increasing plasma choline in the whole animal increased ganglionic acetylcholine levels. The basis for this difference in the effects of in vivo and in Vitro exposure to elevated choline levels on the tissue acetylcholine content was found to involve plasma factor(s), rather than indirect actions of choline, and the acetylcholine content of isolated ganglia was increased when the tissue was perfused with plasma, instead of Krebs solution, containing 10−3M-choline. The extra acetylcholine generated by this procedure was associated with a subsequent transient increase in transmitter release during short intervals of stimulation, but most of the extra acetylcholine was not readily available for release from stimulated ganglia. It is concluded that increasing choline available to sympathetic ganglia over physiological concentration does not have a sustained effect on the turnover of releasable transmitter under the conditions of these experiments.  相似文献   

19.
Abstract: A simple, rapid method is presented for the determination of acetylcholine (ACh) and choline (Ch) in neuronal tissue using HPLC with electrochemical detection. The method is based on the separation of ACh and Ch by reverse-phase HPLC and mixing the effluent as it emerges from the column with acetylcholinesterase and Ch oxidase, which converts endogenous Ch and Ch produced by the hydrolysis of ACh to betaine and hydrogen peroxide. Production of hydrogen peroxide is continuously monitored electrochemically. The sensitivity of the procedure is 1 pmol for Ch and 2 pmol for ACh. Specificity of the method is based on HPLC, two specific enzymatic reactions, and the detection of hydrogen peroxide.  相似文献   

20.
The purpose of the present study is to clarify the effects of the administration of choline on the in vivo release and biosynthesis of acetylcholine (ACh) in the brain. For this purpose, the changes in the extracellular concentration of choline and ACh in the rat striatum following intracerebroventricular administration of choline were determined using brain microdialysis. We also determined changes in the tissue content of choline and ACh. When the striatum was dialyzed with Ringer solution containing 10 microM physostigmine, ACh levels in dialysates rapidly and dose dependently increased following administration of various doses of choline and reached a maximum within 20 min. In contrast, choline levels in dialysates increased after a lag period of 20 min following the administration. When the striatum was dialyzed with physostigmine-free Ringer solution, ACh could not be detected in dialysates both before and even after choline administration. After addition of hemicholinium-3 to the perfusion fluid, the choline-induced increase in ACh levels in dialysates was abolished. Following administration of choline, the tissue content of choline and ACh increased within 20 min. These results suggest that administered choline is rapidly taken up into the intracellular compartment of the cholinergic neurons, where it enhances both the release and the biosynthesis of ACh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号