首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic electron transport around PSI through the NAD(P)H dehydrogenasecomplex (NDH) in tobacco leaf disks, measured as an increasein the dark level of Chl fluorescence after the onset of darkness,was inhibited by antimycin A, an inhibitor of ferredoxin quinonereductase (FQR), suggesting that antimycin A inhibits not onlythe FQR-mediated cyclic flow but also the NDH-dependent flow.This electron flow was inhibited also by amytal, an inhibitorof mitochondrial NDH and by nigericin. The reduction of plastoquinonewas detected when NADPH and ferredoxin were added to the suspensionof the osmotically ruptured chloroplasts of the wild type andNDH-defective mutant. Because the addition of NADPH alone didnot induce the reduction, membrane-bound ferredoxin NADP+reductase(FNR) was supposed to reduce ferredoxin, which may be a moredirect electron donor for the plastoquinone reduction. The presenceof two types of reducing enzymes was suggested from the bi-phasicinhibition of plastoquinone reduction by antimycin A in thewild type. It is proposed that the reducing activity inhibitedby antimycin A at a low concentration is attributed to FQR andthe less sensitive activity to NDH. (Received June 29, 1998; Accepted September 7, 1998)  相似文献   

2.
Jin  Ming-Xian  Mi  Hualing 《Photosynthetica》2002,40(2):161-164
Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro- genase (NDH).  相似文献   

3.
Activity staining with NADPH-nitroblue tetrazolium after native-PAGEof membrane proteins of Synechocystis PCC6803, solubilized with3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS),revealed four NAD(P)H dehydrogenase (NDH) activities; an NDHcomplex of the respiratory chain, a ferredoxin NADP+ reductase(FNR), a drgA product which oxidized both NADH and NADPH, andan uncharacterized NADH-specific enzyme. The NDH complex waspurified with anion exchange and gel filtration chromatographies.The purified complex had a molecular mass of 376 kDa and wascomposed of 9 subunits. Western analysis showed that the complexcontained the NDH-H subunit, but not NDH-A or B. The enzymereduced ferricyanide much faster than plastoquinone and usedNADPH as its prefered electron donor rather than NADH. The enzymaticactivity was inhibited by diphenyleneiodonium chloride and salicylhydroxamicacid, but not by rotenone, p-chloromercuribenzoate, N-ethylmaleimide,flavon, dicumarol, or antimycin A. These results suggest thatthe purified complex is a hydrophilic subcomplex which containsan NADPH binding site and flavin, and is dissociated from ahydrophobic subcomplex, which contains quinone binding site. 1Present address: Division of Applied Life Sciences, GraduateSchool of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502Japan 3Present address: Department of Biotechnology, Faculty of Engineering,Fukuyama University, 1 Gakuencho, Fukuyama, Hiroshima, 729-0292Japan  相似文献   

4.
A novel NAD(P)H-quinone oxidoreductase (NQR) was isolated fromthe cyanobacterium Synechocystis PCC6803 by ion-exchange, affinityand gel-filtration chro-matographies. Isolated NQR was foundto be a drgA gene product that was a homodimer composed of 23-kDasub-units. It showed NAD(P)H-plastoquinone oxidoreductase activitywith Km values for NADPH and NADH of 12 and 48 µM respectively.The activity was inhibited by thiol-modifying reagents, butnot by rotenone, amobarbital, salicylhydroxamic acid, dicumarol,flavone, or diphenylene-iodonium chloride. Therefore, the Cys-147residue is probably involved in the catalytic reaction. Theamino acid sequence of the purified NQR had some homology withthose of NADH oxidase, NAD(P)H-flavin oxidoreductase, and nitroreductasebut did not contain either an adenine-bind-ing motif or a phosphate-bindingmotif, thus, it is a new type of NQR. 1Present address: Division of Applied Life Sciences, GraduateSchool of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502Japan. 3Present address: Department of Biotechnology, Faculty of Engineering,Fukuyama University, 1 Gakuencho, Fukuyama, 729- 0251 Japan.  相似文献   

5.
The donation of electrons from NADPH to the intersystem chain,as monitored by an increase in Chl fluorescence, occurred inthe isolated thylakoid membranes of Synechocystis PCC 6803.The stimulation by NADPH of the methyl viologen-dependent photoreductionof dioxygen and of the reduction of P700+ after photooxidationin the presence of DCMU also confirmed the donation of electronsfrom NADPH to the electron carriers in the intersystem. Thesereactions were sensitive to rotenone, capsaicin, l-(2-thenoyl)-3,3,3-trifluoroacetoneand HgCl2 but not to antimycin A or flavone. In contrast tothe thylakoid membranes from the wild type, those from a mutant,designated M55, in which a gene of a subunit of the pyridinenucleotide dehydrogenase complex (NDH) had been inactivated,did not show evidence of such reactions. These results supportour previous hypothesis that the transport of electrons fromNADPH to the intersystem chain is mediated by NDH [Mi et al.(1994) Plant Cell Physiol. 35: 163] and indicate the bindingof an NADPH-specific NDH to the thylakoid membranes. The Chlfluorescence was quenched transiently by addition of ferredoxinand NADP+ to the thylakoid membranes but showed a subsequentincrease. This result suggests the reduction of plastoquinoneby the photoreduced NADP+ and initiation of the NADPH-mediatedcyclic flow of electrons around PSI. Furthermore, a similarresponse of Chl fluorescence was observed upon the additionof ferredoxin only, demonstrating the ferredoxin-dependent cyclicflow of electrons. Both pathways of cyclic electron transportwere inhibited by rotenone, and were not detected in the NDH-defectedthylakoid membranes from M55, indicating the participation ofthe NDH complex. These results confirm that, in Synechocystis,the thylakoid-bound NDH complex mediates the ferredoxin-dependentcyclic electron flow, as well as the NADPH-dependent cyclicelectron flow. (Received November 24, 1994; Accepted March 16, 1995)  相似文献   

6.
Intact chloroplasts (about 70% Class I chloroplasts) isolatedfrom spinach leaves incorporated 150 nmoles of [1-14C] acetateinto fatty acids per mg chlorophyll in 1 hr at pH 8.3, 25°Cand 25,000 lux. On electron and phase-contrast microscopiescombined with hypotonic treatment of chloroplasts, this syntheticactivity was shown to be proportional to the percentage of ClassI chloroplasts in the preparation. Light was necessary for thesynthesis, the activity in the complete reaction mixture inthe dark being only 2% of that in the light. The synthetic activityincreased with increasing intensities of light to reach saturationat 6,000 lux. CoA and ATP were most effective as cofactors,HCO3, HPO42–, Mg2$ and Mn2$ were less effective.ATP could be replaced by ADP in the presence of Pi, suggestingpossible supply of ATP by photophosphorylation. Omission ofthe NADPH-generation system and NADH did not affect the synthesis,indicating sufficient provision of endogenous NADPH and NADHin intact chloroplasts under light. Addition of DTE did notcause recovery of the synthetic activity of intact chloroplastsin the dark. 1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; )  相似文献   

7.
Rotational streaming of the cytoplasm including chloroplastswas induced by L-histidine, as well as by light, on the anticlinalface of leaf cells of Egeria densa. In the case of treatmentwith L-histidine some of the chloroplasts remained stationaryon the periclinal face of cells after rotational cytoplasmicstreaming was initiated. However, these chloroplasts were easilydislodged and translocated to the centrifugal end of the histidine-treatedcells by application of a centrifugal force that barely affectedthe location of chloroplasts in cells incubated in the darkwithout L-histidine. This result indicates that the anchoringof chloroplasts was weakened by L-histidine. Thus only the releaseof chloroplasts from anchoring was not enough for initiationof their streaming. The cytoplasmic pH (pHc) and vacuolar pH(pHv) were noninvasively monitored by in vivo 31P-nuclear magneticresonance (NMR) spectroscopy. Compared with the dark controlvalue, both illumination and treatment with L-histidine increasedthe pHc by 0.3 units. In contrast, pHv changed only a littlewith both illumination and treatment with L-histidine. Releaseof chloroplasts from anchoring and initiation of cytoplasmicstreaming are discussed in relation to the increase in pHc inducedby both light and L-histidine. 4 Present address: Department of Cell Biology, National Instituteof Agrobiological Resources, Kannondai, Tsukuba, Ibaraki, 305Japan 5 Present address: Marine Biotechnology Institute Co., Ltd.,Head Office, 2-35-10 Hongo, Bunkyo-ku, Tokyo, 113 Japan (Received July 16, 1990; Accepted December 20, 1990)  相似文献   

8.
Both KMnO4 and HCHO in concentrations used for fixation forelectron microscopy induce pronounced swelling of spinach chloroplasts.However, since electron microscopy samples small numbers, itis possible to overlook the swelling effect because the sizerange of the swollen chloroplasts can overlap the extremelywide range of chloroplasts in living mesophyll cells. HCHO fixesspinach chloroplasts only after 16 hr incubation, as verifiedby failure of the chloroplaststo swell when subsequently washedwith water. However, the HCHO treatment fails to prevent aninitial swelling and KMnO4 further swells chloroplasts pre-fixedwith HCHO. Spinach chloroplasts in vivo measured in face area27.7 0.06 µ2 mean value, 23.8 µ2 mode value, range6.2 to 102.9 µ2, and their distribution is skewed so thatthe coefficient of skewness is 0.15. Chloroplasts isolated directlyinto phosphate buffered 4% HCHO after 24 hrs measured in facearea 58.2 µ2 mean value, 46.5 µ2 mode value, range22 to 121 µ2, and the coefficient of skewness increasedto 0.24. When such chloroplasts were additionally treated withphosphate buffered 2.8 % KMnO4 the spinach chloroplasts measuredin facearea 96.4 1.40 µ2 mean value, 86.1 µ2 modevalue, range22 to 203 µ2, and the coefficient of skewnessunchanged at 0.24. Volumes of spinach chloroplasts isolatedin NaCl as reported in the literature approach the volumes ofchloroplasts swollen by HCHO and KMnO4. Some problems concerningsampling difficulties because of wide size ranges and skeweddistributions are discussed. 1 Present address: Department of Agriculture, Bangkhen ExperimentStation, Bangkok, Thailand. 2 Present address: Department of Biology, Wright State University,Dayton, Ohio 45431 U.S.A.  相似文献   

9.
  1. The effect of -hydroxy sulfonates and sulfite, inhibitors ofglycolate oxidase, on the photochemical reactions of spinachchloroplasts was studied. The photo reduction of ferricyanideand NADP was not affected by the poisons, whereas the photophosphorylationand 14CO2 fixation were inhibited.
  2. Glyoxylate was photoreducedby the chloroplasts in the presenceof PPNR and glyoxylate reductase,and this reduction was acceleratedby the addition of NADP.ATP formation accompanied with thereduction of glyoxylate bythe illuminated chloroplasts wasobserved. It is supposed thatglyoxylate oxidizes the photoreducedNADPH2 or PPNR and thusthe photophosphorylation is stimulated.
1A part of this paper was presented at the annual meeting ofAgricultural Society of Japan, in August, 1964. 2Present address: Radiation Center of Osaka Prefecture, Sakai,Osaka.  相似文献   

10.
Mesophyll chloroplasts were isolated from leaves of a Na+-requiringNAD-malic enzyme type, dicotyledonous C4 plant, Amaranthus tricolorL. The chloroplasts converted pyruvate to phosphoenolpyruvateunder illumination, and the conversion was stimulated by Na+.This observation may explain the requirement for Na+ of someC4 plants. 2 Present address: Institute for Life Science Research, NihonNohyaku Co., Ltd., Kawachi-Nagano, Osaka, 586 Japan  相似文献   

11.
The large form of ferredoxin-NADP reductase (FNR) was treatedwith 66% iso-propyl alcohol and fractionated. The precipitatecontained the small form of FNR, which was incapable of reassociatingto the large form. The supernatant contained a new protein factorof low molecular weight. When the protein factor was isolatedfrom the supernatant and added to the small form of FNR, thelarge form of FNR was reconstituted under high salt conditions.Experimental findings indicate that the large form of FNR wascomposed of two molecules of the small form of FNR which wereconnected by a protein factor. The protein factor was purifiedby hydrophobic interaction column chromatography using butyl-Toyopearl650M and its molecular weight was determined to be about 10,000by gel filtration. It was a colorless protein with an unusualabsorption spectrum in ultra-violet regions. The protein factorwas very stable against heat but was digested by trypsin. Itwas named "Connectein" after its connective action. 1 Present address: Biotechnology Research Laboratory, Toyo SodaManufacturing Co., Ltd., Hayakawa, Ayase-shi, Kanagawa 252,Japan. 2 Present address: Nagase Biochemicals, Ltd., Osadano-cho, Fukuchiyama620, Japan. (Received November 9, 1984; Accepted February 9, 1985)  相似文献   

12.
Shoot formation in tobacco callus was completely inhibited bythe presence of barban in the media during the first 2 daysof culture. Callus transferred to media containing barban from4th to the 12th day showed progressively less inhibition. Similarresults were obtained with GA3. 1Present address: Biology Department, Chung Chi College, TheChinese Univ. of Hong Kong, Shatin, N.T., Hong Kong 2Present address: Plant Hormone & Regulator Pioneering ResearchLab., U.S. Dept. Agric, Crops Res. Div., Beltsville, Md., U.S.A. (Received April 21, 1970; )  相似文献   

13.
Physiological mechanisms of triggering and occurrence of a short-distancesystemic (sub-systemic) oxidative burst (OXB) caused by inductionof local OXB induced by the elicitor were investigated usingpotato tuber tissues. The sub-systemic OXB was detected as luminol-mediatedchemiluminescence (CL) on the non-treated side of tissue slicesfollowing a transient appearance of local OXB on the other sidedirectly treated with an elicitor. The sub-systemic OXB wasnot induced when the elicitor was applied in the presence ofa radical scavenger, H2O2-catabolising enzyme, or inhibitorsof activation of local OXB and NADPH oxidase (diphenyleneiodonium:DPI), Ca2+ che-lator and Ca2+ channel blockers). Treatment withH2O2 solution rapidly caused the sub-systemic OXB, which wasinhibited by the presence of the above inhibitors either duringthe treatment with H2O2 or detection of CL. These results suggestedthat the elicitor-stimulated sub-systemic OXB may be dependenton Of generating NADPH oxidase activated by an unknown systemicsignal stimulated by H2O2 generated via local activation ofthe NADPH oxidase. 1Present address: Iwate Biotechnology Research Center, Kita-gami, Iwate, 024 Japan.  相似文献   

14.
Cylic electron flow (CEF) around Photosystem I in photosynthetic eukaryotes is likely to be necessary to augment ATP production, rapidly- and precisely balancing the plastid ATP/NADPH energy budget to meet the demands of downstream metabolism. Many regulatory aspects of this process are unclear. Here we demonstrate that the higher plant plastid NADH/Fd:plastoquinone reductase (NDH) and proposed PGR5/PGRL1 ferredoxin:plastoquinone reductase (FQR) pathways of CEF are strongly, rapidly and reversibly inhibited in vitro by ATP with Ki values of 670 μM and 240 μM respectively, within the range of physiological changes in ATP concentrations. Control experiments ruled out effects on secondary reactions, e.g. FNR- and cytochrome b6f activity, nonphotochemical quenching of chlorophyll fluorescence etc., supporting the view that ATP is an inhibitor of CEF and its associated pmf generation and subsequent ATP production. The effects are specific to ATP, with the ATP analog AMP-PNP showing little inhibitory effect, and ADP inhibiting only at higher concentrations. For the FQR pathway, inhibition was found to be classically competitive with Fd, and the NDH pathway showing partial competition with Fd. We propose a straightforward model for regulation of CEF in plants in which CEF is activated under conditions when stromal ATP low, but is downregulated as ATP levels build up, allowing for effective ATP homeostasis. The differences in Ki values suggest a two-tiered regulatory system, where the highly efficient proton pumping NDH is activated with moderate decreases in ATP, with the less energetically-efficient FQR pathway being activated under more severe ATP depletion.  相似文献   

15.
Using intact and osmotically ruptured chloroplasts, ratios ofcoupling between deposition of protons in the intrathylakoidspace and light-dependent transport of electrons from waterto an external acceptor were determined. The data indicate couplingbetween proton and electron transport at a ratio of H+/e=3 withmethylviologen as electron acceptor in thylakoids and with nitriteas electron acceptor in intact chloroplasts. With ferricyanideas electron acceptor in thylakoids, values close to H+/e=2 wereobserved. Evidence is discussed that H+/e=3 is a fixed valuein intact chloroplasts at levels of thylakoid energization sufficientfor supporting effective carbon assimilation. In the presence of methylviologen and ascorbate, the minimumquantum requirement of oxygen uptake by thylakoids was about2.7 quanta of 675 nm light per O2 indicating an e/O2 ratio of1.33. In the absence of ascorbate, and with KCN present in additionto methylviologen, e/O2 ratios up to 4 were observed. The minimumquantum requirement of oxygen evolution by thylakoids in thepresence of ferricyanide and by intact chloroplasts in the presenceof nitrite was about 8 quanta/O2. (Received May 1, 1995; Accepted October 2, 1995)  相似文献   

16.
The inhibitory effect of linolenate on intact spinach chloroplastsdepends on the level of the internal pool of metabolites. Chloroplastsfrom preilluminated leaves or chloroplasts artificially loadedwith 3-phosphoglyceric acid required higher concentrations oforthophosphate for maximal rates of CO2 dependent O2 evolutionthan untreated chloroplasts. The loaded chloroplasts were moresensitive to linolenate, and in the presence of linolenate theoptimal phosphate concentration was shifted toward lower values.We propose that the inhibition of photosynthesis by linolenateis due to inhibition of the "phosphate translocator". 1 Part of this work has been published in the Book of Abstracts,4th International Congress on Photosynthesis, Reading, U.K.,1977, p. 265–266. 2 This work is part of a doctoral programme carried out by L.Mv6 Akamba in this laboratory. 3 To whom reprint requests should be adressed. (Received October 14, 1978; )  相似文献   

17.
The stimulatory effect of CO2 upon the HILL reaction by isolatedchloroplasts was observed with erythrocyte carbonic anhydraseas a supplementary agent for CO2 deprivation. Addition of thisenzyme to the reaction media remarkably shortened the time requiredto obtain the maximal effect of CO2 The degree of stimulationwas rather small (below 50 per cent) and varied depending onthe preparation of chloroplasts. In general, the effect wasgreater with broken chioroplasts than with whole chloroplasts.The lowering of light intensity diminished the CO2-effect. 1 Present address: Laboratory of Biological Chemistry, TokyoInstitute of Technology, Meguro-ku, Tokyo. (Received April 6, 1962; )  相似文献   

18.
The light-induced absorbance change at 515 nm, light-inducedhydrogen ion uptake and ATP formation were compared in chloroplastsand different types of sonicated subchloroplast particles. Noparallel relationship among the activities for ATP formation,hydrogen ion uptake and the 515-nm change was observed in differenttypes of preparations. NH4Cl inhibited ATP formation in chloroplastsbut had little effect on subchloroplast particles. In contrast,the light-induced hydrogen ion uptake was inhibited by NH4Clin a similar manner. Tetraphenylboron (TPB), at 1 µM, inhibited ATP formationby about 30% in both chloroplasts and subchloroplast particles.In the presence of TPB, ATP formation in chloroplasts was stronglyinhibited by NHC4Cl, but in subchloroplast particles the additionalinhibitory effect of NH4Cl was small. A synergistic inhibitionof photophosphorylation by valinomycin plus NH4Cl was much clearer.Although acceleration of the recovery of the 515-nm change byNH4Cl or valinomycin was moderate, the 515-nm change virtuallydisappeared when NH4Cl and valinomycin were added simultaneously. Although the membrane potential has a major role as the principaldriving force for ATP formation in subchloroplast particles,the simultaneous abolishment of the pH gradient and membranepotential may be required to uncouple ATP formation. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. 2Present address: Ryukyu University, Naha, Okinawa 903, Japan. (Received February 5, 1974; )  相似文献   

19.
The large form of ferredoxin-NADP+ reductase (FNR) was isolatedand partially purified from spinach leaves. It was then convertedinto the small form of FNR at low ionic strength. The smallform was further purified and separated into two fractions,FNR-Sr and FNR-Sir. FNR-Sr could associate to reconstitute thelarge form, but FNRSir could not. Therefore, FNR-Sr is the trueconstructive form of FNR-L and FNR-Sir is the secondary derivativefrom FNR-Sr. 1 Present address: Central Research Laboratory, Toyo-Soda Mfg.Co. Ltd., Tonda, Shinnanyo, Yamaguchi 746, Japan. (Received February 26, 1983; Accepted July 7, 1983)  相似文献   

20.
Washing spinach chloroplasts with high-concentration Tris-saltbuffers induced various types of anion-dependent changes inthe electron flow and photophosphorylation in chloroplasts. Tris-HCl buffer caused enhancement of NADP photoreduction andinhibition of phosphorylation. Tris-HNO3 buffer, on the otherhand, caused inhibition of both electron flow and phosphorylationand decreased trypsin-activated Ca2+-dependent ATPase activity.Tris-H2SO4 and Tris-H3PO4 buffers, however, had no effect onthe rates of electron flow and photophosphorylation. Determination of the presence of the coupling factor (as measuredby ATPase activity) revealed a normal enzyme activity levelin chloroplasts washed with Tris-HCl or Tris-H2SO4 buffer. Removalof the coupling factor by EDTA from chloroplasts washed withTris salts inhibited phosphorylation severely. Phosphorylationactivity could be partially restored by reconstitution withthe coupling factor in die presence of Mg2+. In addition to their different effects on electron flow, Tris-HCland Tris-HNO3 induced a marked decrease in phosphorylative activityitself. The much decreased rate of phosphorylation can be explainedby the release of the coupling factor and by damage to the high-energystate generating mechanism by Tris-HNO3-washing and by modificationof the coupling factor in the case of Tris-HCl-washing. 1Present address: Biology Department, College of Science andEngineering, Ryukyu University, Naha, Okinawa. Japan. (Received June 27, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号