首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously shown that a recombinant 12-kDa fragment of the collagen alpha1(V) chain (Ile(824)-Pro(950)), referred to as HepV, binds to heparin and heparan sulfate (Delacoux, F., Fichard, A., Geourjon, C., Garrone, R., and Ruggiero, F. (1998) J. Biol. Chem. 273, 15069-15076). No consensus sequence was found in the alpha1(V) primary sequence, but a cluster of 7 basic amino acids (in the Arg(900)-Arg(924) region) was postulated to contain the heparin-binding site. The contribution of individual basic amino acids within this sequence was examined by site-directed mutagenesis. Further evidence for the precise localization of the heparin-binding site was provided by experiments based on the fact that heparin can protect the alpha1(V) chain heparin-binding site from trypsin digestion. The results parallel the alanine scanning mutagenesis data, i.e. heparin binding to the alpha1(V) chain involved Arg(912), Arg(918), and Arg(921) and two additional neighboring basic residues, Lys(905) and Arg(909). Our data suggest that this extended sequence functions as a heparin-binding site in both collagens V and XI, indicating that these collagens use a novel sequence motif to interact with heparin.  相似文献   

2.
Human group V phospholipase A(2) (hVPLA(2)) has been shown to have high activity to elicit leukotriene production in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism by which hVPLA(2) interacts with cell membranes to induce leukotriene formation, we mutated surface cationic residues and a catalytic residue of hVPLA(2) and measured the interactions of mutants with model membranes, immobilized heparin, and human neutrophils. These studies showed that cationic residues, Lys(7), Lys(11), and Arg(34), constitute a part of the interfacial binding surface of hVPLA(2), which accounts for its moderate preference for anionic membranes. Additionally, hVPLA(2) binds heparin with high affinity and has a well defined heparin-binding site. The site is composed of Arg(100), Lys(101), Lys(107), Arg(108), and Arg(111), and is spatially distinct from its interfacial binding surface. Importantly, the activities of the mutants to hydrolyze cell membrane phospholipids and induce leukotriene biosynthesis, when enzymes were added exogenously to neutrophils, correlated with their activities on phosphatidylcholine membranes but not with their affinities for anionic membranes and heparin. These results indicate that hVPLA(2) acts directly on the outer plasma membranes of neutrophils to release fatty acids and lysophospholipids. Further studies suggest that products of hVPLA(2) hydrolysis trigger the cellular leukotriene production by activating cellular enzymes involved in leukotriene formation. Finally, the temporal and spatial resolution of exogenously added hVPLA(2) and mutants suggests that binding to cell surface heparan sulfate proteoglycans is important for the internalization and clearance of cell surface-bound hVPLA(2).  相似文献   

3.
We have previously provided compelling evidence that human recombinant interleukin 2 (IL-2) binds to the sulfated polysaccharides heparin, highly sulfated heparan sulfate and fucoidan. Here we show that IL-2 binding is dependent on heparin chain length, but with fragments as small as 15-mers retaining binding activity. The addition of exogenous heparin has no effect on the in vitro biological activity of IL-2. In addition soluble IL-2 receptor alpha and beta polypeptides do not compete with heparin for the binding of IL-2. IL-2 bound by heparin is still recognized by two IL-2 specific monoclonal antibodies, 3H9 and H2- 8, whose epitopes lie in the amino terminal region. Murine IL-2 unlike its human counterpart fails to bind to heparin. Human IL-2 analogs with single amino acid substitutions at positions Lys43, Thr51, and Gln126 analogs no longer bind to heparin. By contrast the Arg38Ala analog retains heparin full heparin binding activity. These experimental findings together with molecular modeling studies suggest two putative heparin binding sites on human IL-2, one involving four basic residues, Lys48, Lys49, Lys54, and His55, and the other being a discontinuous site comprising Lys43, Lys64, Arg81, and Arg83. Neither of these two clusters is completely conserved in murine IL-2. Overall our data suggest that the binding of human IL-2 to heparin and heparan sulfate does not interfere with IL-2/IL-2 receptor interactions. Therefore, binding to glycosaminoglycan may be a mechanism for retaining the cytokine in an active form close to its site of secretion in the tissue, thus favoring a paracrine role for IL-2.   相似文献   

4.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

5.
Antithrombin III (ATIII) is the main inhibitor of the coagulation proteases like factor Xa and thrombin. Anticoagulant activity of ATIII is increased by several thousand folds when activated by vascular wall heparan sulfate proteoglycans (HSPGs) and pharmaceutical heparins. ATIII isoforms in human plasma, alpha-ATIII and beta-ATIII differ in the amount of glycosylation which is the basis of differences in their heparin binding affinity and function. Crystal structures and site directed mutagenesis studies have mapped the heparin binding site in ATIII, however the hydrogen bond switch and energetics of interaction during the course of heparin dependent conformational change remains largely unclear. An analysis of heparin bound conformational states of ATIII using PEARLS software showed that in heparin bound intermediate state, Arg 47 and Arg 13 residues make hydrogen bonds with heparin but in the activated conformation Lys 11 and Lys 114 have more hydrogen bond interactions. In the protease bound-antithrombin-pentasaccharide complex Lys 114, Pro 12 and Lys 125 form important hydrogen bonding interactions. The results showed that A-helix and N-terminal end residues are more important in the initial interactions but D-helix is more important during the latter stage of conformational activation and during the process of protease inhibition. We carried out the residue wise Accessible Surface Area (ASA) analysis of alpha and beta ATIII native states and the results indicated major differences in burial of residues from Ser 112 to Ser 116 towards the N-terminal end. This region is involved in the P-helix formation on account of heparin binding. A cavity analysis showed a progressively larger cavity formation during activation in the region just adjacent to the heparin binding site towards the C-terminal end. We hypothesize that during the process of conformational change after heparin binding beta form of antithrombin has low energy barrier to form D-helix extension toward N and C-terminal end as compared to alpha isoform.  相似文献   

6.
Dual polarization interferometry (DPI) is an analytical technique that allows the simultaneous determination of thickness, density, and mass of a biological layer on a sensing waveguide surface in real time. The technique was applied to the analysis of carbohydrate-protein interactions. The selected system involved a 12-kDa recombinant fragment of collagen V (HepV) and heparin, a complex polysaccharide. Here we report on the analysis of thickness, density, and mass of surface structures obtained during the binding of HepV to heparin, which is a useful model compound for the sulfated, protein-binding regions of heparan sulfate. This system, which was initially studied for its biological relevance, displayed anomalous behavior in kinetic studies using surface plasmon resonance (SPR) assays that has been attributed to putative conformational changes. It was this putative conformational change that prompted us to investigate the binding using an alternative analytical approach. While using DPI to monitor binding events, a streptavidin layer (surface coverage 2.105 ng mm(-2)) was bound to the sensor surface (92% coverage), which captured 0.105 ng mm(-2) of biotinylated heparin (a stoichiometric ratio of 1:6 heparin-streptavidin). The heparin inserted into the streptavidin layer but was still found to be capable of binding 0.154 ng mm(-2) of HepV, which was also observed to insert into the streptavidin layer. This allowed the reliable calculation of the stoichiometric ratio for the HepV-heparin complex ( approximately 1.7:1.0), which has proved to be difficult to evaluate by SPR assays. Furthermore, real-time analysis of the heparin-HepV interaction by DPI suggested that there was some surface loss (probably of streptavidin) while the binding was occurring rather than the putative conformational change that has been suggested on the basis of kinetic data alone. This gives further insight into the binding mechanism of HepV to heparin.  相似文献   

7.
Inhibition of thrombin by heparin cofactor (HCII) is accelerated approximately 1000-fold by heparin or dermatan sulfate. We found recently that the mutation Arg189----His decreases the affinity of HCII for dermatan sulfate but not for heparin (Blinder, M. A., Andersson, T. R., Abildgaard, U., and Tollefsen, D. M. (1989) J. Biol. Chem. 264, 5128-5133). Other investigators have implicated Arg47 and Lys125 of anti-thrombin (homologous to Arg103 and Lys185 of HCII) in heparin binding. To investigate the corresponding residues in HCII, we have constructed amino acid substitutions (Arg103----Leu, Gln, or Trp; Lys185----Met, Asn, or Thr) by oligonucleotide-directed mutagenesis of the cDNA and expressed the products in Escherichia coli. The recombinant HCII variants were assayed for binding to heparin-Sepharose and for inhibition of thrombin in the presence of various concentrations of heparin or dermatan sulfate. All of the Arg103 variants bound to heparin with normal affinity. Furthermore, inhibition of thrombin by the Arg103----Leu variant occurred at a normal rate in the absence of a glycosaminoglycan and was accelerated by normal concentrations of heparin and dermatan sulfate. These results indicate that HCII, unlike anti-thrombin, does not require a positive charge at this position for the interaction with heparin or dermatan sulfate. The Arg103----Gln and Arg103----Trp variants inhibited thrombin at about one-third of the normal rate in the absence of a glycosaminoglycan, suggesting that these mutations exert an effect on the reactive site (Leu444-Ser445) of HCII. All of the Lys185 variants bound to heparin with decreased affinity but inhibited thrombin at approximately the normal rate in the absence of a glycosaminoglycan. These variants required greater than 10-fold higher concentrations of heparin to accelerate inhibition of thrombin and were not stimulated significantly by dermatan sulfate, suggesting that heparin and dermatan sulfate interact with Lys185 of HCII. These results provide evidence that the glycosaminoglycan-binding site in HCII includes Lys185 but not Arg103, both of which were predicted to be involved by homology to anti-thrombin.  相似文献   

8.
Hepatocyte growth factor (HGF) is a heparin-binding, multipotent growth factor that transduces a wide range of biological signals, including mitogenesis, motogenesis, and morphogenesis. Heparin or closely related heparan sulfate has profound effects on HGF signaling. A heparin-binding site in the N-terminal (N) domain of HGF was proposed on the basis of the clustering of surface positive charges [Zhou, H., Mazzulla, M. J., Kaufman, J. D., Stahl, S. J., Wingfield, P. T., Rubin, J. S., Bottaro, D. P., and Byrd, R. A. (1998) Structure 6, 109-116]. In the present study, we confirmed this binding site in a heparin titration experiment monitored by nuclear magnetic resonance spectroscopy, and we estimated the apparent dissociation constant (K(d)) of the heparin-protein complex by NMR and fluorescence techniques. The primary heparin-binding site is composed of Lys60, Lys62, and Arg73, with additional contributions from the adjacent Arg76, Lys78, and N-terminal basic residues. The K(d) of binding is in the micromolar range. A heparin disaccharide analogue, sucrose octasulfate, binds with similar affinity to the N domain and to a naturally occurring HGF isoform, NK1, at nearly the same region as in heparin binding. (15)N relaxation data indicate structural flexibility on a microsecond-to-millisecond time scale around the primary binding site in the N domain. This flexibility appears to be dramatically reduced by ligand binding. On the basis of the NK1 crystal structure, we propose a model in which heparin binds to the two primary binding sites and the N-terminal regions of the N domains and stabilizes an NK1 dimer.  相似文献   

9.
The newly discovered laminin alpha(5) chain is a multidomain, extracellular matrix protein implicated in various biological functions such as the development of blood vessels and nerves. The N-terminal globular domain of the laminin alpha chains has an important role for biological activities through interactions with cell surface receptors. In this study, we identified residues that are critical for cell binding within the laminin alpha(5) N-terminal globular domain VI (approximately 270 residues) using site-directed mutagenesis and synthetic peptides. A recombinant protein of domain VI and the first four epidermal growth factor-like repeats of domain V, generated in a mammalian expression system, was highly active for HT-1080 cell binding, while a recombinant protein consisting of only the epidermal growth factor-like repeats showed no cell binding. By competition analysis with synthetic peptides for cell binding, we identified two sequences: S2, (123)GQVFHVAYVLIKF(135) and S6, (225)RDFTKATNIRLRFLR(239), within domain VI that inhibited cell binding to domain VI. Alanine substitution mutagenesis indicated that four residues (Tyr(130), Arg(225), Lys(229), and Arg(239)) within these two sequences are crucial for cell binding. Real-time heparin-binding kinetics of the domain VI mutants analyzed by surface plasmon resonance indicated that Arg(239) of S6 was critical for both heparin and cell binding. In addition, cell binding to domain VI was inhibited by heparin/heparan sulfate, which suggests an overlap of cell and heparin-binding sites. Furthermore, inhibition studies using integrin subunit monoclonal antibodies showed that integrin alpha(3)beta(1) was a major receptor for domain VI binding. Our results provide evidence that two sites spaced about 90 residues apart within the laminin alpha(5) chain N-terminal globular domain VI are critical for cell surface receptor binding.  相似文献   

10.
It is well established that the human immunodeficiency virus-1 envelope glycoprotein surface unit, gp120, binds to cell-associated heparan sulfate (HS). Virus infectivity is increased by such interaction, and a variety of soluble polyanions efficiently neutralize immunodeficiency virus-1 in vitro. This interaction has been mainly attributed to the gp120 V3 loop. However, although evidence suggested that this particular domain does not fully recapitulate the binding activity of the protein, the ability of HS to bind to other regions of gp120 has not been completely addressed, and the exact localizations of the polysaccharide binding sites are not known. To investigate in more detail the structural basis of the HS-gp120 interaction, we used a mapping strategy and compared the heparin binding activity of wild type and mutant gp120 using surface plasmon resonance-based binding assays. Four heparin binding domains (1-4) were identified in the V2 and V3 loops, in the C-terminal domain, and within the CD4-induced bridging sheet. Interestingly, three of them were found in domains of the protein that undergo structural changes upon binding to CD4 and are involved in co-receptor recognition. In particular, Arg(419), Lys(421), and Lys(432), which directly interact with the co-receptor, are targeted by heparin. This study provides a complete account of the gp120 residues involved in heparin binding and identified several binding surfaces that constitute potential target for viral entry inhibition.  相似文献   

11.
The interaction of hepatic lipase (HL) with heparan sulfate is critical to the function of this enzyme. The primary amino acid sequence of HL was compared to that of lipoprotein lipase (LPL), a related enzyme that possesses several putative heparin-binding domains. Of the three putative heparin-binding clusters of LPL (J. Biol. Chem. 1994. 269: 4626-4633; J. Lipid Res. 1998. 39: 1310-1315), one was conserved in HL (Cluster 1; residues Lys 297-Arg 300 in rat HL) and two were partially conserved (Cluster 2; residues Asp 307-Phe 320, and Cluster 4; residues Lys 337, and Thr 432-Arg 443). Mutants of HL were generated in which potential heparin-binding residues within Clusters 1 and 4 were changed to Asn. Two chimeras in which the LPL heparin-binding sequences of Clusters 2 and 4 were substituted for the analogous HL sequences were also constructed. These mutants were expressed in Chinese hamster ovary (CHO) cells and assayed for heparin-binding ability using heparin-Sepharose chromatography and a CHO cell-binding assay. The results suggest that residues within the homologous Cluster 1 region (Lys 297, Lys 298, and Arg 300), as well as some residues in the partially conserved Cluster 4 region (Lys 337, Lys 436, and Arg 443), are involved in the heparin binding of hepatic lipase. In the cell-binding assay, heparan sulfate-binding affinity equal to that of LPL was seen for the RHL chimera mutant that possessed the Cluster 4 sequence of LPL. Mutation of Cluster 1 residues of HL resulted in a major reduction in heparin binding ability as seen in both the cell-binding assay and the heparin-Sepharose elution profile. These results suggest that Cluster 1, the N-terminal heparin-binding domain, is of primary significance in RHL. This is different for LPL: mutations in the C-terminal binding domain (Cluster 4) cause a more significant shift in the salt required for elution from heparin-Sepharose than mutations in the N-terminal domain (Cluster 1).  相似文献   

12.
The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. In this work, we characterized ionic HS interactions of multimeric Sonic hedgehog (called ShhNp) as well as mutant forms lacking one or more CW residues. We found that deletion of all five CW residues as well as site-directed mutagenesis of CW residues Lys(33), Arg(35), and Lys(39) (mouse nomenclature) abolished HS binding. In contrast, CW residues Arg(34) and Lys(38) did not contribute to HS binding. Analysis and validation of Shh crystal lattice contacts provided an explanation for this finding. We demonstrate that CW residues Arg(34) and Lys(38) make contact with an acidic groove on the adjacent molecule in the multimer, suggesting a new function of these residues in ShhNp multimerization rather than HS binding. Therefore, the recombinant monomeric morphogen (called ShhN) differs in CW-dependent HS binding and biological activity from physiologically relevant ShhNp multimers, providing new explanations for functional differences observed between ShhN and ShhNp.  相似文献   

13.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   

14.
Lys(114) of the plasma coagulation proteinase inhibitor, antithrombin, has been implicated in binding of the glycosaminoglycan activator, heparin, by previous mutagenesis studies and by the crystal structure of antithrombin in complex with the active pentasaccharide unit of heparin. In the present work, substitution of Lys(114) by Ala or Met was shown to decrease the affinity of antithrombin for heparin and the pentasaccharide by approximately 10(5)-fold at I 0.15, corresponding to a reduction in binding energy of approximately 50%. The decrease in affinity was due to the loss of two to three ionic interactions, consistent with Lys(114) and at least one other basic residue of the inhibitor binding cooperatively to heparin, as well as to substantial nonionic interactions. The mutation minimally affected the initial, weak binding of the two-step mechanism of pentasaccharide binding to antithrombin but appreciably (>40-fold) decreased the forward rate constant of the conformational change in the second step and greatly (>1000-fold) increased the reverse rate constant of this step. Lys(114) is thus of greater importance for the affinity of heparin binding than any of the other antithrombin residues investigated so far, viz. Arg(47), Lys(125), and Arg(129). It contributes more than Arg(47) and Arg(129) to increasing the rate of induction of the activating conformational change, a role presumably exerted by interactions with the nonreducing end trisaccharide unit of the heparin pentasaccharide. However, its major effect, also larger than that of these two residues, is in maintaining antithrombin in the activated state by interactions that most likely involve the reducing end disaccharide unit.  相似文献   

15.
The N-terminal region residues, Lys11, Arg13, and Arg24, of the plasma coagulation inhibitor, antithrombin, have been implicated in binding of the anticoagulant polysaccharide, heparin, from the identification of natural mutants with impaired heparin binding or by the X-ray structure of a complex of the inhibitor with a high-affinity heparin pentasaccharide. Mutations of Lys11 or Arg24 to Ala in this work each reduced the affinity for the pentasaccharide approximately 40-fold, whereas mutation of Arg13 to Ala led to a decrease of only approximately 7-fold. All three substitutions resulted in the loss of one ionic interaction with the pentasaccharide and those of Lys11 or Arg24 also in 3-5-fold losses in affinity of nonionic interactions. Only the mutation of Lys11 affected the initial, weak interaction step of pentasaccharide binding, decreasing the affinity of this step approximately 2-fold. The mutations of Lys11 and Arg13 moderately, 2-7-fold, altered both rate constants of the second, conformational change step, whereas the substitution of Arg24 appreciably, approximately 25-fold, reduced the reverse rate constant of this step. The N-terminal region of antithrombin is thus critical for high-affinity heparin binding, Lys11 and Arg24 being responsible for maintaining appreciable and comparable binding energy, whereas Arg13 is less important. Lys11 is the only one of the three residues that is involved in the initial recognition step, whereas all three residues participate in the conformational change step. Lys11 and Arg13 presumably bind directly to the heparin pentasaccharide by ionic, and in the case of Lys11, also nonionic interactions. However, the role of Arg24 most likely is indirect, to stabilize the heparin-induced P-helix by interacting intramolecularly with Glu113 and Asp117, thereby positioning the crucial Lys114 residue for optimal ionic and nonionic interactions with the pentasaccharide. Together, these findings show that N-terminal residues of antithrombin make markedly different contributions to the energetics and dynamics of binding of the pentasaccharide ligand to the native and activated conformational states of the inhibitor that could not have been predicted from the X-ray structure.  相似文献   

16.
Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs) have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat–heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR) spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events.  相似文献   

17.
BACKGROUND: Annexin V, an abundant anticoagulant protein, has been proposed to exert its effects by self-assembling into highly ordered arrays on phospholipid membranes to form a protective anti-thrombotic shield at the cell surface. The protein exhibits very high-affinity calcium-dependent interactions with acidic phospholipid membranes, as well as specific binding to glycosaminoglycans (GAGs) such as heparin and heparan sulfate, a major component of cell surface proteoglycans. At present, there is no structural information to elucidate this interaction or the role it may play in annexin V function at the cell surface. RESULTS: We report the 1.9 A crystal structure of annexin V in complex with heparin-derived tetrasaccharides. This structure represents the first of a heparin oligosaccharide binding to a protein where calcium ions are essential for the interaction. Two distinct GAG binding sites are situated on opposite protein surfaces. Basic residues at each site were identified from the structure and site-directed mutants were prepared. The heparin binding properties of these mutants were measured by surface plasmon resonance. The results confirm the roles of these mutated residues in heparin binding, and the kinetic and thermodynamic data define the functionally distinct character of each distal binding surface. CONCLUSION: The annexin V molecule, as it self-assembles into an organized array on the membrane surface, can bind the heparan sulfate components of cell surface proteoglycans. A novel model is presented in which proteoglycan heparan sulfate could assist in the localization of annexin V to the cell surface membrane and/or stabilization of the entire molecular assembly to promote anticoagulation.  相似文献   

18.
Previously we reported that type V collagen synthesized by Schwann cells inhibits the outgrowth of axons from rat embryo dorsal root ganglion neurons but promotes Schwann cell migration (Chernousov, M. A., Stahl, R. C., and Carey, D. J. (2001) J. Neurosci. 21, 6125-6135). Analysis of Schwann cell adhesion and spreading on dishes coated with various type V collagen domains revealed that Schwann cells adhered effectively only to the non-collagenous N-terminal domain (NTD) of the alpha4(V) collagen chain. Schwann cell adhesion to alpha4(V)-NTD induced actin cytoskeleton assembly, tyrosine phosphorylation, and activation of the Erk1/Erk2 protein kinases. Adhesion to alpha4(V)-NTD is cell type-specific because rat fibroblasts failed to adhere to dishes coated with this polypeptide. Schwann cell adhesion and spreading on alpha4(V)-NTD was strongly inhibited by soluble heparin (IC(50) approximately 30 ng/ml) but not by chondroitin sulfate. Analysis of the heparin binding activities of a series of recombinant alpha4(V)-NTD fragments and deletion mutants identified a highly basic region (not present in other type V collagen NTD) as the site responsible for high affinity heparin binding. Schwann cells adhered poorly to dishes coated with alpha4(V)-NTD that lacked the heparin binding site and failed to spread or assemble organized actin-cytoskeletal structures. Soluble alpha4(V)-NTD polypeptide that contained the heparin binding site inhibited spreading of Schwann cells on dishes coated with alpha4(V)-NTD. Affinity chromatography of Schwann cell detergent extracts on a column of immobilized alpha4(V)-NTD resulted in the isolation of syndecan-3, a transmembrane heparan sulfate proteoglycan. Together, these results suggest that Schwann cells bind to collagen type V via syndecan-3-dependent binding to a novel high affinity heparin binding site in the alpha4(V)-NTD.  相似文献   

19.
During peripheral nerve development, Schwann cells synthesize collagen type V molecules that contain alpha4(V) chains. This collagen subunit possesses an N-terminal domain (NTD) that contains a unique high affinity heparin binding site. The alpha4(V)-NTD is adhesive for Schwann cells and sensory neurons and is an excellent substrate for Schwann cell and axonal migration. Here we show that the alpha4(V)-NTD is released constitutively by Schwann cells both in culture and in vivo. In cultures of neonatal rat Schwann cells, alpha4(V)-NTD release is increased significantly by ascorbate treatment, which facilitates collagen post-translational modification and collagen trimer assembly. In peripheral nerve tissue, the alpha4(V)-NTD is localized to the region of the outer Schwann cell membrane and associated extracellular matrix. The released alpha4(V)-NTD binds to the cell surface and extracellular matrix heparan sulfate proteoglycans of Schwann cells. Pull-down assays and immunofluorescent staining showed that the major alpha4(V)-NTD-binding proteins are glypican-1 and perlecan. alpha4(V)-NTD binding occurs via a mechanism that requires the high affinity heparin binding site and that is blocked by soluble heparin, demonstrating that binding to proteoglycans is mediated by their heparan sulfate chains.  相似文献   

20.
Factor IXa (FIXa) is known to have a binding site for heparin that has not been mapped by a mutagenesis study. By homology modeling based on structural data, we identified eight basic residues in the catalytic domain of FIXa that can potentially bind to heparin. These residues, Lys(98), Lys(126), Arg(165), Arg(170), Lys(173), Lys(230), Arg(233), and Lys(239) (chymotrypsin numbering) were substituted with Ala in separate constructs in Gla-domainless forms. Following activation, it was found that all FIXa derivatives cleaved the chromogenic substrate CBS 31.39 with near normal catalytic efficiencies. Similarly, antithrombin inactivated FIXa derivatives with a similar second-order association rate constant (k(2)) in both the absence and presence of pentasaccharide. In the presence of a full-length heparin, however, k(2) values were dramatically impaired with certain mutants. Direct binding studies revealed that the same mutants lost their affinities for binding to heparin-Sepharose. Both kinetic and direct binding data indicated that five basic residues of FIXa in the following order of importance, Arg(233) > Arg(165) > Lys(230) > Lys(126) > Arg(170) are critical for binding to heparin. Consistent with these results, examination of the crystal structure of the catalytic domain of FIXa indicated that all five basic residues are spatially aligned in a manner optimal for interaction with heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号