首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human breast carcinoma MCF-7 cells, phorbol diesters inhibit proliferation and induce cell maturation. We have recently reported that exogenous TGF-beta 1 reverses the resistance of a breast adenocarcinoma MCF-7 subline (MCF-7:RPh-4) to these phorbol ester effects. Here, we investigated the involvement of TGF-beta 1 in the PKC-mediated inhibition of breast-cancer cell proliferation. Parental MCF-7-conditioned medium contained a 20-fold higher transforming activity on NRK-49F fibroblasts than the TPA-resistant subline. TPA increased TGF-beta activity in MCF-7 conditioned medium. MCF-7 cells also expressed more TGF-beta 1 mRNA than the resistant subline. TPA induced a dose-dependent increase in TGF-beta 1 mRNA levels that paralleled the inhibitory effect on MCF-7 proliferation. The lower level of TGF-beta mRNA expression in TPA resistant subline was not modified after addition of TPA, but was significantly increased in the presence of exogenous TGF-beta 1. These data argue in favor of a role of endogenous TGF-beta 1 in the maturation process induced by protein kinase C activation.  相似文献   

2.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

3.
To determine whether activation of protein kinase C is involved in the proliferation of interleukin-3 (IL-3) -dependent cells, we examined the effect of tumor-promoting phorbol esters on the in vitro proliferation of the IL-3-dependent cell lines FD and DA-1. The viability of FD and DA-1 cells cultured for 24 hours in 100 nM phorbol myristate acetate (PMA) and 10% FCS was similar to that of cells cultured in 25% WEHI-3 conditioned medium as a source of IL-3, and 10% FCS. FD cells failed to proliferate in concentrations of FCS of up to 50%, while DA-1 cell proliferation was not markedly influenced by FCS. By contrast, PMA promoted the proliferation of FD and DA-1 cells in the absence of FCS and enhanced their proliferation in the presence of 10% FCS, 60- and 20-fold, respectively. Stimulation of proliferation was achieved with as little as 10 nM PMA and was maximal at 100 nM PMA. Low concentrations (0.05-0.1%) of WEHI-3 CM promoted the proliferative response of FD and DA-1 cells to PMA, but at concentrations of WEHI-3 CM greater than 0.8%, no further increment in proliferation was obtained with PMA. As little as 1/2 hour of exposure to phorbol esters was sufficient to cause translocation of protein kinase C from the cytosol to the membranes of DA-1 cells, and 1 hour of exposure to phorbol esters was sufficient to stimulate DNA synthesis. A protein kinase C inhibitor, H-7, at a concentration of 10 microM inhibited phorbol ester-induced stimulation of DA-1 cell proliferation. When DA-1 cells were exposed to the calcium ionophore A23187 in addition to both a phorbol ester and IL-3, their proliferation was enhanced over that stimulated by only the phorbol ester and IL-3. The data indicate that stimulation of proliferation of IL-3-dependent cells involves the activation of protein kinase C.  相似文献   

4.
The effects of phorbol ester on cell growth inhibition by transforming growth factor beta 1 (TGF-beta 1) in human hepatoma cell lines, Mahlavu and PLC/PRF/5, were investigated. TGF-beta 1 (2.5 to 10 pM) alone could not inhibit the growth of Mahlavu cells, whereas in the presence of 12-O-tetradecanoyl phorbol 13-acetate (TPA) at 1 ng/ml, TGF-beta 1 could suppress their growth in a dose-dependent manner. The growth of PLC/PRF/5 cells could be inhibited by addition of TGF-beta 1 (2.5 to 10 pM) alone in a dose-dependent manner, and this action was not affected by TPA (1 ng/ml). The TGF-beta 1 inhibition induced by TPA in Mahlavu cells could not be cancelled by addition of protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) (10 microM) or staurosporin (1 nM). Thus, TPA could induce TGF-beta 1 inhibition of cell growth in Mahlavu cells which did not respond to TGF-beta 1 alone, and activation of protein kinase C does not seem to be behind this TPA action.  相似文献   

5.
The stimulations of ureagenesis and cyclic AMP accumulation induced by glucagon were inhibited by 10 nM vasopressin or 100 nM phorbol 12-myristate 13-acetate (PMA). The maximal accumulation of cyclic AMP induced by glucagon was clearly diminished by these agents without change in the EC50 for the peptide hormone suggesting a non-competitive type of inhibition. H-7 blocked the inhibition of glucagon-stimulated ureagenesis induced by PMA and vasopressin and diminished their effect on the accumulation of cyclic AMP induced by glucagon. It is concluded that activation of protein kinase C inhibits the stimulation of ureagenesis and the accumulation of cyclic AMP induced by glucagon in liver cells from hypothyroid rats; H-7 inhibits the effects of protein kinase C activation.  相似文献   

6.
The effects of short-term phorbol ester treatment of CHO cells that stably express 900 fmol of recombinant human serotonin 5-HT1A receptor/mg of protein on coupling to the inhibition of adenylyl cyclase and on phosphorylation of the receptor were studied. Pretreatment of cell monolayers with phorbol 12-myristate 13-acetate (PMA) caused a dose- and time-dependent shift of the half-maximal dose of serotonin (5-HT) required to inhibit membrane adenylyl cyclase (from IC50 approximately 100 nM to approximately 400 nM). This desensitization (shift in IC50) was rapid, occurring with 5 min of pretreatment and being maximal by 10-15 min; it was also dose-dependent, being half-maximal at approximately 300 nM PMA. Desensitization was also induced by sn-dioctanoylglycerol (DiC8) and blocked by the protein kinase C (PKC) inhibitors sphingosine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). In detached permeabilized cells, PMA pretreatment caused a rapid phosphorylation of immunoprecipitated 5-HT1A receptors, with an approximately 3-4-fold increase that was maximal after 15 min and persisted for 90 min. The phosphorylation occurred at a similar dose of PMA as that which induced desensitization (half-maximal at approximately 300 nM, maximal at 500 nM to 1 microM), could be reproduced by pretreatment with the PKC activators DiC8 or phorbol 12,13-dibutyrate (PDBu), and could be blocked by the PKC inhibitors sphingosine or H-7. The stoichiometry of the phosphorylation was approximately 2 mol of [32P]ATP/mol of receptor, suggesting the involvement at least two of three putative PKC sites within the 5-HT1A receptor. The close concordance between the PKC-induced desensitization and phosphorylation suggests a potential causative link between these two effects of PKC on the human 5-HT1A receptor.  相似文献   

7.
In platelets, and in several other cell systems, pre-treatment with protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA) results in the inhibition of receptor-mediated responses, suggesting that protein kinase C may play an important role in the termination of signal transduction. In the present study, we have attempted to locate the site of action of phorbol ester by comparing thrombin-induced (i.e. receptor-mediated) platelet activation with that induced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and NaF, two agents which by-pass the receptor and initiate platelet responses by directly modulating G-protein function. After a 10 s pre-treatment with PMA (16 nM), dense-granule secretion induced by thrombin (0.2 unit/ml), GTP[S] (40 microM) and NaF (30 mM) was potentiated, resulting in a greater than additive response to agent plus PMA. However, after a 5 min pre-treatment, thrombin-induced secretion alone was inhibited, whereas PMA plus GTP[S]/NaF-induced release remained greater than additive. [32P]Phosphatidate formation in response to all three agents, in contrast, was inhibited by 50-70% in PMA (5 min)-treated platelets. That secretion induced by these agents is a protein kinase C-dependent event was demonstrable by using staurosporine, a protein kinase C inhibitor which at concentrations of 1-10 nM inhibited (70-90%) PMA-induced as well as thrombin- and NaF-induced secretion and protein phosphorylation. In membranes from PMA-treated platelets, thrombin-stimulated GTPase activity was significantly enhanced compared with that in untreated membranes (59% versus 82% increase over basal activity). The results suggest that inhibition of receptor-mediated responses by PMA may be directed towards two sites relating to G-protein activation: (i) receptor-stimulated GTPase activity and (ii) G-protein-phospholipase C coupling. Furthermore, the lack of inhibition of NaF- and GTP[S]-induced secretion by PMA suggests that different mechanisms may be involved in thrombin-induced and G-protein-activator-induced secretion.  相似文献   

8.
9.
Exposure to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA, 100nM) for 10 minutes enhanced cyclic AMP accumulation in human neutrophils under basal conditions and in response to the beta-adrenergic receptor agonist isoproterenol (ISO), 1 microM) and the adenylate cyclase activator forskolin (FSK, 10mM). Potentiation of responses to ISO by PMA was dose-dependent between 0.1 and 100nM PMA. The diacylglycerol analogue, 1-oleoyl-2-acetylglycerol (OAG) (50 microM) also elevated beta-receptor responses, but 4 beta-phorbol (100nM), lacking the capacity to activate PMA, was ineffective. Short-term exposure (12 seconds) to the peptide n-formylmethionine leucyl-phenylalanine (FMLP, 1 microM) also elevated neutrophil cyclic AMP accumulation. All potentiating effects of PMA on cyclic AMP production were inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7). Elevation of cyclic AMP by FMLP was insensitive to H7. PMA had no apparent effect on beta-receptor agonist-affinity, distribution between cell-surface and internalised compartments, or the capacity of ISO to induce beta-receptor internalisation. Responses to FSK or ISO in terms of fold-stimulation of basal cyclic AMP accumulation in the presence of PMA were not elevated by PMA. These findings indicate that PMA exerts a potentiating effect on neutrophil adenylate cyclase responses through protein kinase C activation. FMLP elevation of neutrophil cyclic AMP in the absence of other stimuli, appears however, to be insensitive to protein kinase inhibition.  相似文献   

10.
This study explores the relationship between anti-proliferative signaling by transforming growth factor-beta (TGF-beta) and insulin-like growth factor-binding protein-3 (IGFBP-3) in human breast cancer cells. In MCF-7 cells, the expression of recombinant IGFBP-3 inhibited proliferation and sensitized the cells to further inhibition by TGF-beta1. To investigate the mechanism, we used T47D cells that lack type II TGF-beta receptor (TGF-betaRII) and are insensitive to TGF-beta1. After introducing the TGF-betaRII by transfection, the basal proliferation rate was significantly decreased. Exogenous TGF-beta1 caused no further growth inhibition, but immunoneutralization of endogenous TGF-beta1 restored the proliferation rate almost to the control level. The addition of IGFBP-3 did not inhibit the proliferation of control cells but caused dose-dependent inhibition in TGF-betaRII-expressing cells when exogenous TGF-beta1 was also present. Similarly, receptor-expressing cells showed dose-dependent sensitivity to exogenous TGF-beta1 only in the presence of exogenous IGFBP-3. This indicates that in these cells, anti-proliferative signaling by exogenous IGFBP-3 requires both the TGF-betaRII and exogenous TGF-beta1. To investigate this synergism, the phosphorylation of TGF-beta signaling intermediates, Smad2 and Smad3, was measured. Phosphorylation of each Smad was stimulated by TGF-beta1 and, independently, by IGFBP-3 with the two agents together showing a cumulative effect. These data suggest that IGFBP-3 inhibitory signaling requires an active TGF-beta signaling pathway and implicate Smad2 and Smad3 in IGFBP-3 signal transduction.  相似文献   

11.
Carbachol (Cch), a muscarinic acetylcholine receptor (mAChR) agonist, increases intracellular-free Ca(2+) mobilization and induces mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in MCF-7 human breast cancer cells. Pretreatment of cells with the selective phospholipase C (PLC) inhibitor U73122, or incubation of cells in a Ca(2+)-free medium did not alter Cch-stimulated MAPK/ERK phosphorylation. Phosphorylation of MAPK/ERK was mimicked by phorbol 12-myristate acetate (PMA), an activator of protein kinase C (PKC), but Cch-evoked MAPK/ERK activation was unaffected by down-regulation of PKC or by pretreatment of cells with GF109203X, a PKC inhibitor. However, Cch-stimulated MAPK/ERK phosphorylation was completely blocked by myristoylated PKC-zeta pseudosubstrate, a specific inhibitor of PKC-zeta, and high doses of staurosporine. Pretreatment of human breast cancer cells with wortmannin or LY294002, selective inhibitors of phosphoinositide 3-kinase (PI3K), diminished Cch-mediated MAPK/ERK phosphorylation. Similar results were observed when MCF-7 cells were pretreated with genistein, a non-selective inhibitor of tyrosine kinases, or with the specific Src tyrosine kinase inhibitor PP2. Moreover, in MCF-7 human breast cancer cells mAChR stimulation induced an increase of protein synthesis and cell proliferation, and these effects were prevented by PD098059, a specific inhibitor of the mitogen activated kinase kinase. In conclusion, analyses of mAChR downstream effectors reveal that PKC-zeta, PI3K, and Src family of tyrosine kinases, but not intracellular-free Ca(2+) mobilization or conventional and novel PKC activation, are key molecules in the signal cascade leading to MAPK/ERK activation. In addition, MAPK/ERK are involved in the regulation of growth and proliferation of MCF-7 human breast cancer cells.  相似文献   

12.
Exposure of MCF-7 human breast cancer cells to phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) results in a dose-dependent inhibition of cell proliferation. One of the earliest biochemical events induced by TPA is the translocation of protein kinase C from the cytosolic to the particulate compartment. We have investigated the effects of permeant diacylglycerol 1,2-dioctanoyl-glycerol (diC8) on both protein kinase C activity and MCF-7 cell proliferation. DiC8 induces a discrete but significant translocation of protein kinase C within the first minutes of MCF-7 cell treatment (26 +/- 6%, mean +/- SD of 5 different experiments, upon 5 min incubation in the presence of 43 micrograms/ml diC8). However, this effect is only transient as the enzymatic activity returns to the control value after 60 min. DiC8 mimics the effect of TPA on MCF-7 cell proliferation. The dose-response curves for both protein kinase C translocation and cell growth inhibition show that diC8 exerts its effects on both parameters in the same range of concentrations, despite some discrepancies at the lowest doses. We also report that long-term treatment of the cells with diC8 does not lead to the protein kinase C disappearance observed during prolonged exposure to TPA. All together, our results reinforce the hypothesis of a negative modulatory role of protein kinase C in MCF-7 cell proliferation and suggest that the enzyme translocation but not its down-regulation could be a pre-requisite in the biological cell response.  相似文献   

13.
The aims of the present study were to determine the role of protein kinase C (PKC) on meiotic resumption and its effects on pronuclear formation and cleavage in the bovine. Oocytes were matured in the presence of 0, 1, 10 and 100 nM of phorbol 12-myristate 13-acetate (PMA), to evaluate the percentage of germinal vesicle breakdown. To study pronuclear formation and cleavage, oocytes were randomly distributed in four groups and matured in modified TCM-199 with LH and FSH (negative control); 10% of estrous cow serum (positive control); 100 nM of PMA (treatment); 100 nM of 4alpha-PDD (phorbol ester control). Oocytes were also matured in positive control medium, fertilized and transferred to KSOM with increasing concentrations of a PKC inhibitor. The protein profile and the presence of PKC at the end of maturation period were determined by SDS-PAGE followed by Silver Stain and Western blot, respectively. PMA stimulated meiotic resumption in a concentration-dependent manner. PKC stimulation during oocyte maturation caused an increase in pronuclear formation and did not cause parthenogenetic activation. Inhibitor of PKC (MyrPKC) inhibited cleavage in a dose-dependent and irreversible manner. A protein band around 74 kDa was not detected in PMA-treated oocytes and PKC was not detected by Western blot at the end of the maturation period. In conclusion, meiotic resumption was accelerated and the rate of oocytes with two pronuclei was increased when PKC was activated during oocyte maturation. Moreover, cleavage was inhibited in the presence of PMA.  相似文献   

14.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

15.
16.
Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.  相似文献   

17.
The effect of phorbol 12-myristate 13-acetate (PMA) on protein kinase C was studied by metabolically labeling GH3 cells with [35S]methionine and using a polyclonal antibody raised against rat brain protein kinase C to immunoprecipitate the enzyme. PMA accelerates the loss of immunologically reactive protein kinase C from the cells in a time- and dose-dependent manner. The half-life of the enzyme in cells treated with 400 nM PMA was 2 h whereas in control cells 60-70% of the enzyme was still detectable after 24 h. The concentration of PMA required to reduce cellular protein kinase C 50% after 24 h was 130 nM. PMA also induced the translocation of [35S]Met-labeled protein kinase C from the cytosol to the membranes in a concentration-dependent manner. Less protein kinase C was translocated to membranes when cells were treated with 20 nM PMA than when they were exposed to 400 nM PMA. In the latter case, most of the labeled protein kinase C became membrane-associated. Maximal translocation was evident after 15 min of incubation with either concentration of PMA and was followed by degradation of the membrane-associated enzyme. The rate of degradation of membrane-associated protein kinase C was the same with both concentrations of PMA. In cells treated with 20 nM PMA, disappearance of [35S]Met-labeled protein kinase C from the cytosolic fraction occurred in two phases, a rapid decrease characteristic of the membrane-associated enzyme, followed by a slower loss similar to that seen in control cells. The results indicate that turnover of protein kinase C is enhanced by membrane association.  相似文献   

18.
Exposure of MCF-7 human breast cancer cells to phorbol ester 12-O-tetradecanoyl-13-acetate (TPA) results in a complete inhibition of cell proliferation. We investigated the effects of TPA on protein kinase C activity when cells were exposed to phorbol ester for various lengths of time. TPA induces within 5 min a drastic dose-dependent decrease of the cytosolic protein kinase C activity. The enzyme apparently lost at the cytosolic level was only partially recovered in the particulate fraction. The apparent down-regulation of the translocated enzyme which was only 34% after 1 min reached 72% and 84% after respectively 10 min and 15 min. Moreover, when cells are treated with TPA for longer periods of time, the particulate protein kinase C activity continues to decrease, dropping below control after 1 hour. This progressive decline leads to an almost complete disappearance of protein kinase C activity in MCF-7 cells after 45 hours of TPA treatment. The apparent loss of protein kinase C activity upon short- as well as long-exposure of cells to TPA was not accompanied by a concomitant increase of Ca, PL-independent protein kinase activity. We discuss the implication of these biochemical events in the inhibition of cell proliferation with regard to the respective short- and long-term effects of TPA on protein kinase C activity.  相似文献   

19.
Proliferation of vascular smooth muscle cells (VSMC) contributes to the pathogenesis of atherosclerosis, and glycated serum albumin (GSA, Amadori adduct of albumin) might be a mitogen for VSMC proliferation, which may further be associated with diabetic vascular complications. In this study, we investigated the involvement of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and protein kinase C (PKC), in GSA-stimulated mitogenesis, as well as the functional relationship between these factors. VSMC stimulation with GSA resulted in a marked activation of ERK. The MAPK kinase (MEK) inhibitor, PD98059, blocked GSA-stimulated MAPK activation and resulted in an inhibition of GSA-stimulated VSMC proliferation. GSA also increased PKC activity in VSMC in a dose-dependent manner. The inhibition of PKC by the PKC inhibitors, GF109203X and Rottlerin (PKCdelta specific inhibitor), as well as PKC downregulation by phorbol 12-myristate 13-acetate (PMA), inhibited GSA-induced cell proliferation and blocked ERK activation. This indicates that phorbol ester-sensitive PKC isoforms including PKCdelta are involved in MAPK activation. Thus, we show that the MAPK cascade is required for GSA-induced proliferation, and that phorbol ester-sensitive PKC isoforms contribute to cell activation and proliferation in GSA-stimulated VSMC.  相似文献   

20.
Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号