首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Summary Ability of shoot regeneration from cotyledonary explants of rapeseed (B. napus) was surveyed for 100 cultivars. Effects of explant age and plant growth regulators were determined before screening the genotypes. The optimal condition required 4-day-old cotyledons as explant and 4.0 mg/l benzylaminopurine as plant growth regulator. Gas-permeable tape as sealing material was more effective for shoot regeneration than Parafilm. When testing cultivars, shoot regeneration response was strongly influenced by genotype with a range of variation from 97% (percentage of explants regenerating shoots) in Arabella and Norin 26 to 0% in Norin 18 and Norin 30. The response was not dependent on origin and cropping type (spring vs. winter type). The ability of shoot regeneration was not related to that of microspore embryogenesis. The regenerants rooted on medium containing 2.0 mg/l indole-3-butyric acid and after planting in soil flowered and set seeds. Histological studies showed that shoot meristems developed in callus which had grown from the vascular bundle tissue within 8 days.Abbreviations BA 6-benzylaminopurine - IBA indole-3-butyric acid - NAA 1-naphthaleneacetic acid  相似文献   

2.
Summary Restriction patterns of chloroplast (cp) and mitochondrial (mt) DNA in Brassica napus rapeseed reveal the alloplasmic nature of cytoplasmic male sterility in this crop. Both the Shiga and Bronowski systems probably exploit cytoplasmic diversity in B. napus cultivars arising from introgression of cytoplasm from the other rapeseed species, B. campestris. Nuclear genes specific to these systems do not cause sterility in maintainers (Bronowski and Isuzu-natane) because they have a campestris cytoplasm, but give rise to sterility in napus cytoplasms. In the course of hybridization to napus cultivars a line with the triazine resistant cytoplasm (a campestris cytoplasm) has undergone an alteration in the mt genome rendering its restriction pattern more similar than previously to that of napus. The alteration may be an inversion between 7.2 and 3.4 kb in length.  相似文献   

3.
RAPDs (Randomly Amplified Polymorphic DNAs) were used to discriminate among 23 cultivars of oilseed rape (Brassica napus) selected from several breeding programs. A set of 100 random sequence 10-mer primers were tested, of which 70 produced bands and 22 showed evidence of polymorphism. A selection of six primers produced 23 polymorphic bands of between 300 to 2200 base pairs in size, sufficient to distinguish between the cultivars. An analysis of seed of five cultivars obtained from four different sites showed stability of banding pattern over source of seed. The analysis was repeated using four different thermocyclers, each of which produced the same band pattern. UPGMA cluster analysis indicates that the relationships among some of the cultivars is closer for those from the same breeding program than for those from different programs. The results of this study show that RAPDs can be used as a method of identification for oilseed rape cultivars.Contribution number 941  相似文献   

4.
Summary Results from a diallel mating of two rapeseed lines with distinctly different linolenic acid concentration show that this trait is mainly under control of nuclear genes of the embryo. However, significant differences in reciprocal F1, BC1 and BC2 indicate maternal control, which is realized by interaction between maternal genotype and nuclear genes of the embryo. Additionally, temperature exerts considerable influence on the degree of maternal control. Since no reciprocal differences are detectable in F2, cytoplasmic factors seem not to be involved in the inheritance of linolenic acid concentration. Hypotheses on the physiological nature of maternal control of this trait are discussed.  相似文献   

5.
Novel Brassica napus somatic hybrids have been created through protoplast fusion of B. oleracea var. botrytis and B. rapa var. oleifera genotypes selected for high erucic acid (22:1) content in the seed oil. Fifty amphidiploids (aacc) and one putative hexaploid (aacccc) hybrid were recovered in one fusion experiment. Conversely, only one amphidiploid and numerous regenerates with higher DNA contents were produced in a similar fusion using a different B. rapa partner. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Analysis of organellar DNA revealed a distinct bias toward the inheritance of chloroplasts from the B. rapa (aa) genome. All amphidiploids set self-pollinated seed. A erucic acid content as high as 57.4% was found in the seed oil of one regenerated plant. Fatty acid composition was stable in the R1 generation and was coupled with increased female fertility. Other novel agronomic characters in the hybrids recovered include large seed size, lodging resistance, and non-shattering seed pods.  相似文献   

6.
7.
Summary Somatic hybridization between Brassica napus and B. hirta (or Sinapis alba) is described. No cybrid plant with B. napus nucleus exhibiting cytoplasmic male sterility was recovered. Somatic hybrids were identified morphologically and, for some of them, by cytological observations. They were also characterised by Southern hybridization of nuclear rDNA. Chloroplast and mitochondrial DNA restriction analysis showed that 2 plants out of 14 have B. hirta ctDNA, one the B. napus mtDNA and the other a hybrid. Nine possess B. napus ctDNA with a hybrid mtDNA. For six of them, mtDNA patterns present novel bands, suggesting intergenomic recombination during fusion. These hybrids will be included in the breeding program.  相似文献   

8.
Microspore cryopreservation is a potentially powerful method for long-term storage of germplasm for in vitro embryo production in plant species. In this study, several factors influencing embryo production following the ultra-low temperature (–196 °C in liquid nitrogen) storage of isolated microspores of rapeseed (Brassica napus L.) were investigated. Microspores were prepared in cryogenic vials and subjected to various cooling treatments before immersion in liquid nitrogen for varying periods. Efficiency of microspore cryopreservation was reflected by in vitro embryo production from frozen microspores. Of all the cooling treatments, microspores treated with a cooling rate of 0.25% °C/min and a cooling terminal temperature of –35 °C before immersion in liquid nitrogen produced the highest embryo yields (18% and 40% of unfrozen controls in two genotypes, respectively). Fast thawing in a 35 °C water bath was necessary to recover a high number of embryos from microspore samples being frozen at a higher cooling rate, while thawing speed did not affect samples after freezing at a slower cooling rate. The storage density of cryopreserved microspores affected embryo production. Storage at the normal culture density (8×104 microspores/ml) was less efficient for embryo production than at high densities (4×106 microspores/ml and 1.6×107 microspores/ml), although no significant difference was found between the high densities. Evaluation of plant lines derived from frozen microspores indicated no variation in isozyme pattern and no enhanced cold tolerance of these lines. Isolated microspores of B. napus could be stored for extended period for in vitro embryo production.  相似文献   

9.
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.  相似文献   

10.
Uniconazole at various concentrations on rape, at the three-leaf stage, was examined for physiologic and yield effects. Foliar sprays of 10, 25, and 50 mg/liter significantly reduced seedling height, and increased shoot width (stem width before elongation), number of green leaves, and total dry weight at transplanting. Chlorophyll content, superoxide dismutase and catalase activities, root oxidizability (capacity for root oxidation), and ethylene production were also increased. Additionally, the number of branches and pods/plant were increased; and a 7.4, 8.5, and 4.3% increase of seed yield over the controls was observed with treatments at 10, 25, and 50 mg/liter uniconazole, respectively. No significant effects were observed on plant maturity, the seed oil content, or the erucic acid and glucosinolate content. Total oil production significantly increased with 10, 25, and 50 mg/liter by 9.9, 10.6, and 6.8%, respectively, over the controls. These results suggested that uniconazole-induced high productivity was accompanied by increased levels of activities of various antioxidants, including superoxide dismutase and catalase, and by the improvement of root oxidizability and plant vigor.Abbreviations SOD superoxide dismutase - CAT catalase - NBT nitro blue tetrazolium - TTC red tetrazolium - IAA indoleacetic acid  相似文献   

11.
Erucic acid (22:1) is a valuable renewable resource for the oleochemical industry. Currently available high erucic acid rapeseed cultivars contain only about 50% erucic acid in the seed oil. A substantial increase of the erucic acid content of the rapeseed oil could increase market prospects. The transgenic line TNKAT, over expressing the rapeseed fatty acid elongase gene (fae1) and expressing the Ld-LPAAT gene from Limnanthes douglasii was crossed with the line 6575-1 HELP (high erucic and low polyunsaturated fatty acid). A from the F1 plants produced population of 90 doubled haploid (DH) lines was tested in a greenhouse with three replicates. Parental lines TNKAT and 6575-1 HELP contained 46 and 50% erucic acid in the seed oil, respectively. In the DH population the erucic acid content ranged between 35 and 59%. The Ld-LPAAT + Bn-fae1.1 transgene showed a 1:1 segregation. The transgenic DH lines contained up to 8% trierucolyglycerol, but surprisingly had a by 2.3% lower erucic acid content compared to the non-transgenic segregants. Results indicated that the ectopically expressed fae1.1 gene may not be functional. The DH population also showed a large quantitative variation for PUFA content ranging from 6 to 28% (TNKAT: 21%, 6575-1 HELP: 8%). Regression analysis showed that in the DH population a 10% reduction in PUFA content led to a 4.2% increase in erucic acid content. Development of locus specific PCR primers for the two resident erucic acid genes fae1.1 (A-genome) and fae1.2 genes (C-genome) of rapeseed allowed sequencing of the respective alleles from TNKAT and 6575-1 HELP. Single nucleotide polymorphisms were only found for the fae1.1 gene. Use of allele specific fae1.1 PCR primers, however, did not reveal a significant effect of the fae1.1 allele from either parent on erucic acid content. The high erucic acid low polyunsaturated fatty acid DH lines and the fae1 locus specific primers developed in the present study should be useful in future studies aimed at increasing erucic acid content in rapeseed.  相似文献   

12.
Summary Protoplasts isolated enzymatically from precultured cotyledonary leaves ofB. oleracea var.botrytis and cultured in KM8p medium (Kao andMichayluk 1975) underwent sustained divisions in about 0.1% population to eventually produce callus, whereas mesophyll protoplasts from either field grown orin vitro raised plants failed to divide. The callus readily differentiated on Murashige-Skoog medium as modified for shoot culture (Binding 1974) to give rise to shoot and roots.  相似文献   

13.
The genetic basis of virulence of 24 isolates of L. maculans collected from various sites throughout south-eastern and south-western Australia were studied using five clone-lines of B. napus. The experimental design allowed the estimation of the environmental and genetic components of variance using a standard analysis of variance. Virulence of these isolates (as measured by the percentage of stem girdling, %G) on the clonelines NCII and Tap was found to be most likely controlled by a small number of genes; the broad-sense heritabilities were 79.7% and 67.5% for virulence on NCII and Tap, respectively. The significance of these results in relation to the potential of L. maculans in adapting to new resistant B. napus cultivars is discussed.  相似文献   

14.
Summary Co-segregation studies of isozyme markers and male fertility restoration showed that a restorer gene from radish was introduced into rapeseed along with an isozyme marker (Pgi-2). The radish chromosome segment carrying these genes was introgressed into rapeseed through homoeologous recombination, substituting for some of the rapeseed alleles. By crossing heterozygous restored plants to male-sterile lines and to maintainers, tight linkage was found between the restorer gene and the marker. The recombination fraction was estimated at 0.25 ± 0.02%. Although few restored plants lacked the radish isozyme marker, it was still possible to distinguish male-fertile from male-sterile plants by their PGI-2 patterns. Furthermore, homozygous and heterozygous restored plants could be separated by specific PGI-2 phenotypes. Thus, the Pgi-2 marker is now currently used in restorer breeding programs.  相似文献   

15.
Explants composed of the epidermis and 4–9 layers of subepidermal cells were excised from internodes of Brassica napus L. ssp. oleifera cv. Westar and cultured on modified Murashige and Skoog (MS) medium. The three or four terminal internodes excised from plants at an early stage (before any flower buds had opened) were shown to be the best explant source. Both cytokinin and auxin were required for induction of shoot organogenesis. Of six auxins tested, only naphthaleneacetic acid (NAA) was effective in shoot bud initiation. All four cytokinins tested (when associated with 0.5 mgl-1 NAA) promoted organogenesis, but at differing frequencies. The highest shoot induction frequency was obtained at 10–15 mgl-1 benzyladenine (BA). The organogenic response was strongly affected by the nitrogen content of the medium. The best response was observed when NO3 - was the sole nitrogen source (supplied as KNO3) in the range 30–90 mM. Sucrose and glucose were equally supportive in shoot regeneration with the optimal levels at 0.12 M and 0.15 M, respectively. Shoots were rooted on medium free of growth regulators and mature plants were grown in the greenhouse. Plants were also recovered from leafy structures which differed morphologically and histologically from shoot buds.  相似文献   

16.
The genetic control of adult-plant blackleg [Leptosphaeria maculans (Desm.) Ces. et De Not.] resistance in rapeseed (Brassica napus L.) was studied in the F2 and first-backcross populations of the cross Maluka (blackleg-resistant) x Niklas (highly susceptible). A L. maculans isolate possessing high levels of host specificity (MB2) was used in all inoculations. Resistance/susceptibility was evaluated using three separate measures of crown-canker size, i.e. the percentage of crown girdled (%G), external lesion length (E) and internal lesion area (%II). Disease severity scores for the F2 and first-backcross populations based on E and %II gave discontinuous distributions, indicating major-gene control for these measures of resistance; but those for %G were continuous, indicating quantitative genetic control for this measure. Chi-square tests performed on the (poorly-defined) resistance classes, based on E, in the F2 and first-backcross populations indicated the likelihood for resistance being governed by a single, incompletely dominant major gene. Although the distributions of the F2 and first-backcross populations, based on%II, were clearly discontinuous, the observed segregation ratios for resistance and susceptibility did not fit any of the numerous Mendelian ratios which were considered. Differences in inheritance of resistance according to the assessment method and blackleg isolate used, were discussed.  相似文献   

17.
Summary Rapeseed (Brassica napus) is a predominantly selfpollinated crop with about one-third outcrossing. The outcrossing rate may be influenced by environmental factors, and hence changes in the heterozygosity level of a variety may occur during multiplication. In an investigation on environmental variation in outcrossing, we estimated the outcrossing rate in the Swedish spring rapeseed cv Topas by isozyme analysis and found that outcrossing varied from 12% to 47% over five locations in Sweden, Denmark and Germany. Among flowers at different positions on the same plant, average outcrossing varied from 11% at the top to 39% at the bottom of the plant. In conclusion, environmental factors can greatly influence the outcrossing rate in rapeseed, and an investigation therefore merit further studies.  相似文献   

18.
Hocking  P. J. 《Plant and Soil》1993,155(1):387-390
Critical concentrations of NO3-N in fresh petiole tissue and total N in the dried lamina were determined for the youngest mature leaf (YML) of field-grown canola. For dry matter yield of canola sown on 4 May, critical NO3-N concentration in the YML petiole at the rosette stage (RS) was 1.46 mg/g fresh wt. At the flower-buds-visible stage (BV) it was 0.45 mg/g fresh wt. For seed yield the values were 1.72 and 0.53 mg/g fresh wt. Critical total N concentration in the YML lamina for dry matter yield were 69 mg/g dry wt. at RS and 57 at BV. For seed yield they were 71 and 59 mg/g dry wt. Critical NO3-N concentrations in the YML petiole of canola sown on 30 May were reduced by 50%; critical total-N concentrations in the YML lamina were not reduced to the same extent. Despite the reductions in critical N concentrations in the YML, critical N fertilizer rates for vegetative growth and seed yield were unaffected by sowing date or plant growth stage.  相似文献   

19.

Background

Harvest index (HI), the ratio of grain yield to total biomass, is considered as a measure of biological success in partitioning assimilated photosynthate to the harvestable product. While crop production can be dramatically improved by increasing HI, the underlying molecular genetic mechanism of HI in rapeseed remains to be shown.

Results

In this study, we examined the genetic architecture of HI using 35,791 high-throughput single nucleotide polymorphisms (SNPs) genotyped by the Illumina BrassicaSNP60 Bead Chip in an association panel with 155 accessions. Five traits including plant height (PH), branch number (BN), biomass yield per plant (BY), harvest index (HI) and seed yield per plant (SY), were phenotyped in four environments. HI was found to be strongly positively correlated with SY, but negatively or not strongly correlated with PH. Model comparisons revealed that the A–D test (ADGWAS model) could perfectly balance false positives and statistical power for HI and associated traits. A total of nine SNPs on the C genome were identified to be significantly associated with HI, and five of them were identified to be simultaneously associated with HI and SY. These nine SNPs explained 3.42 % of the phenotypic variance in HI.

Conclusions

Our results showed that HI is a complex polygenic phenomenon that is strongly influenced by both environmental and genotype factors. The implications of these results are that HI can be increased by decreasing PH or reducing inefficient transport from pods to seeds in rapeseed. The results from this association mapping study can contribute to a better understanding of natural variations of HI, and facilitate marker-based breeding for HI.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1607-0) contains supplementary material, which is available to authorized users.  相似文献   

20.
Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号