共查询到20条相似文献,搜索用时 15 毫秒
1.
In ungerminated rice seeds, (Japonica rice variety, CV Tapei 309), the content of free amines (putrescine, spermidine, spermine, tyramine) was higher in seed lots having a low germination frequency compared to those with high germination potential. Conversely, amine conjugates (di-feruloylputrescine, di-feruloylspermidine, diferuloyldiaminopropane and feruloyltyramine) decreased with loss of viability. Thus, these compounds appeared to constitute biochemical markers of seed viability. In seeds with high germination potential, conjugates decreased drastically during germination, with an early and rapid increase in free amines (putrescine, spermidine, tyramine). Arginine decarboxylase (ADC) activity was highest during the germination of high germination potential seeds, its activity gradually declining with loss of viability and being closely correlated with agmatine content. The polyamine biosynthetic inhibitors (-DL-difluoromethylarginine, DFMA, a specific and irreversible inhibitor of ADC; -DL-difluoromethylornithine, DFMO, a specific irreversible inhibitor of ornithine decarboxylase (ODC); cyclohexylammonium sulfate, CHA, inhibitor of spermidine synthase) neither depleted putrescine and spermidine levels nor inhibited germination in high germination potential seeds. In low germination potential seeds, the germination process was inhibited by DFMA or CHA. Application of agmatine resulted in a reversal of inhibition. DFMA inhibited ADC activity in both categories of seeds. In low germination potential seeds treated with CHA no ADC activity was found. These results suggest that amines are involved in the germination process of rice seeds. It appears that amine conjugates may serve as a storage form of amines which, upon enzymatic hydrolysis, could supply the cell with an additional amine reserve and influence cell division and/or cell elongation.Abbreviations ADC
arginine decarboxylase
- ODC
ornithine decarboxylase
- DFMA
-DL-difluoromethylarginine
- DFMO
-DL-difluoromethylornithine
- CHA
cyclohexylammonium sulfate 相似文献
2.
Promoter strength influences polyamine metabolism and morphogenic capacity in transgenic rice tissues expressing the oat adc cDNA constitutively 总被引:2,自引:0,他引:2
We analyzed molecularly and biochemically a series of transgenic rice lines expressing the oat adc (arginine decarboxylase) cDNA under the control of the constitutive maize ubiquitin 1 promoter. We established baseline biochemical parameters to elucidate the role of polyamines (PAs) during morphogenesis. We measured mRNA levels, ADC enzyme activity and cellular PAs in dedifferentiated callus. Polyamine levels were also quantified in two subsequent developmental stages – regenerating tissue and differentiated shoots. We observed significant (P<0.05) differences in the levels of individual PAs at the three developmental stages. The amounts of putrescine (Put) and spermidine (Spd) in dedifferentiated transgenic callus were lower than those in the wild type or in hpt (hygromycin resistant)-controls, whereas the amount of spermine (Spm) was increased up to two-fold. In regenerating tissue, this trend was reversed, with significantly higher levels of Put and Spd (P<0.05), and lower levels of Spm (P<0.05) compared to non-transformed or hpt-control tissues at the same developmental stage. In differentiated shoots, there was a general increase in PA levels, with significant increases in Put, Spd, and Spm (P<0.05); on occasion reaching six times the level observed in wild type and hpt-control tissues. These results contrast those we reported previously using the weaker CaMV 35S promoter driving adc expression. mRNA measurements and ADC enzyme activity were consistently higher (P<0.01) in all tissues expressing pUbiadcs compared to equivalent tissues engineered with 35Sadc. Our findings are consistent with a threshold model which postulates that high adc expression leading to production of Put above a basal level is necessary to generate a big enough metabolic pool to trigger PA flux through the pathway leading to an increase in the concentration of Spd and Spm. This can be best accomplished by a strong constitutive promoter driving adc. We discuss our results in the context of flux through the PA pathway and its impact on morphogenesis. 相似文献
3.
In the short-day plant Chrysanthemum (Chrysanthemum morifolium Ramat. variety Pavo) putrescine and spermidine conjugates appeared in the apical bud before the first observable transformation of the meristem into floral structures. These compounds accumulated on floral initiation and well before floral evocation. Spermidine conjugates were predominant during floral initiation whereas free amines did not accumulate to any significant extent. Different associations of amides were observed during floral initiation as compared with the reproductive phase. 3,4-Dimethoxyphenethylamine conjugates (water-insoluble compounds) were the predominant amine conjugates observed during flower development. These compounds decreased drastically after fertilization. In vegetative buds from plants grown in long days polyamine conjugates were very low and appeared as plants aged. We present evidence that ornithine decarboxylase (ODC) regulates putrescine biosynthesis during floral initiation and floral development. When ODC action was blocked by DFMO (-DL-difluoromethylornithine, a specific, irreversible inhibitor of ODC), flowering was inhibited, and free and conjugated polyamines were not detected. This treatment led to a slight enhancement of ADC activity. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with DFMA (-DL difluoromethylarginine, a specific, irreversible inhibitor of ADC) did not affect flowering and the polyamine titers. The results suggest that ODC and polyamine conjugates are involved in regulating floral initiation in Chrysanthemum.Abbreviations ADC
arginine decarboxylase
- ODC
ornithine decarboxylase
- DFMA
-DL-difluoromethylarginine
- DFMO
-DL-difluoromethylornithine 相似文献
4.
Arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxydase (DAO) free amine and conjugated amine titers were estimated in leaf explants of Chrysanthemum morifolium Ramat. var. Spinder cultivated in vitro in relation to hormone treatment. Addition of benzyladenine (BA) to a basal medium caused the formation of buds on the explants. BA plus 2,4 dichlorophenoxyacetic acid (2,4 D) caused callus formation and proliferation. Formation of roots was obtained by addition of indolylacetic acid (IAA). Arginine decarboxylase (ADC) ornithine decarboxylase (ODC) and diamine oxidase (DAO) activities increased during the first days of culture when cell multiplication was rapid, followed by a sharp decline as the rate of cell division decreased and differentiation took place. DAO activities increased rapidly in proliferating and growing organs and decreased during maturity. This increase was concomitant with ADC and ODC activities and polyamine content (free and conjugated polyamines). The biosynthesis and oxidation of polyamines which occurred simultaneously in physiological states of intense metabolism such as cell division or organ formation were directly correlated. In callus cultures DAO activity was blocked throughout development and regulated neither the cellular levels of polyamines nor polyamine conjugates. Levels of polyamine conjugates were high in callus cultures throughout development. In foliar explants cultivated on a medium promoting callus, inhibition of ODC activity by DFMO (-DL-difluoromethylornithine, a specific enzyme-activated ODC inhibitor) resulting in an amide deficiency facilated the expression of differentiated cell function; substantial activation of DAO was observed until the emergence of the buds. On a medium promoting bud formation, -OH ethylhydrazine (DAO inhibitor) promoted callus formation without differentiation. In this system DAO activity was blocked and there were high levels of polyamines, especially polyamine conjugates, throughout the culture period. The relationship among free and conjugated polyamines related biosynthetic enzyme activities, DAO activities, cell division and organ formation is discussed.Abbreviations ADC =
arginine decarboxylase
- ODC =
ornithine decarboxylase
- DOA =
diamine oxidase
- DFMA =
-DL-difluoromethylarginine
- DFMO =
-DL-difluoromethylornithine
- Put =
putrescine 相似文献
5.
We introduced the oat adc cDNA into rice under the control of the constitutive maize ubiquitin 1 promoter. We studied molecularly and biochemically sixteen independent transgenic plant lines. Significant increases in mRNA levels, ADC enzyme activity and polyamines were measured in transgenic callus. These increases were not maintained in vegetative tissue or seeds in regenerated plants, with the exception of one lineage. This particular lineage showed very significant increases in putrescine preferentially in seeds (up to 10 times compared to wild type and controls transformed with the hpt selectable marker alone). We have demonstrated that in cereals such as rice, over-expression of the oat adc cDNA results in increased accumulation of polyamines at different stages of development. We have also demonstrated that strong constitutive promoters, such as the maize ubiquitin 1 promoter, are sufficient to facilitate heritable high-level polyamine accumulation in seed. Our results demonstrate that by screening adequate numbers of independently derived transgenic plants, it is possible to identify those individuals which express a desired phenotype or genotype. 相似文献
6.
The role of endogenous polyamines in the control of NaCl-inhibited growth of rice seedlings was investigated. Putrescine, spermidine and spermine were all present in shoots and roots of rice seedlings. NaCl treatment did not affect spermine levels in shoots and roots. Spermidine levels in shoots and roots were increased with increasing concentrations of applied NaCl. NaCl at a concentration of 50 mM, which caused only slight growth inhibition, drastically lowered the level of putrescine in shoots and roots. Addition of precursors of putrescine biosynthesis (L-arginine and L-ornithine) resulted in an increase in putrescine levels in NaCl-treated shoots and roots, but did not allow recovery of the growth inhibition of rice seedlings induced by NaCl. Pretreatment of rice seeds with putrescine caused an increase in putrescine level in shoots, but could not alleviate the inhibition effect of NaCl on seedling growth. The current results suggest that endogenous polyamines may not play a significant role in the control of NaCl-inhibited growth of rice seedlings.Abbreviations PUT
putrescine
- SPD
spermidine
- SPM
spermine 相似文献
7.
Endogenous polyamine content of the ectomycorrhizal fungus Paxillus involutus , as well as the activity of its biosynthetic enzymes in relation to mycelia ageing were investigated in this work. Polyamines in free, PCA-soluble and insoluble conjugated forms, are present in Paxillus involutus mycelia in relatively high amounts and the ratio of putrescine to spermidine is age-dependent. Both arginine- and ornithine-decarboxylases are present, but putrescine biosynthesis proceeds mostly via ornithine decarboxylase and decreases with the age of mycelia. There was a large release of free polyamines from mycelia which showed age-dependent features. Clear polyamine uptake was observed in 2-wk-old mycelia and no competition between putrescine and cadaverine was detected. Putrescine uptake seems to reduce ornithine decarboxylase activity, but does not affect arginine decarboxylase. 相似文献
8.
Nuclear and cell migration during pollen development in rice were studied using semi-thin section light microscopy, differential interference contrast microscopy and epifluorescence microscopy. Four migrations of nuclei and cells were observed and described in detail here. The first nuclear migration occurs at the uninucleate microspore stage, when the nucleus of the microspore migrates from the center to the periphery of the cell, and then to the wall opposite the pollen aperture where pollen mitosis I takes place. The second migration occurs at the early bicellular pollen stage, with the vegetative nucleus migrating three-quarters of the circumference of the pollen wall, finally locating at the periphery of the wall where the microspore cell nucleus is positioned. The third migration occurs at the late bicellular pollen stage, with the vegetative nucleus migrating from the periphery of the cell to the central part of the pollen and the generative cell migrating from the opposite side of the aperture to a position between the aperture and the vegetative nucleus where pollen mitosis II takes place. The fourth migration appears at the mature pollen stage when the two sperm cells and the vegetative nucleus migrate to the opposite side of the aperture, finally becoming positioned in the cytoplasm of the vegetative cell distal to the aperture where the male germ unit forms. Cytological observations of pollen abortion resulting from allelic interaction at the S-a, S-b and S-c loci show that abnormalities in the first or second nuclear migration result in the formation of empty abortive pollen, whereas abnormalities in the third or fourth migrations cause production of stainable abortive pollen. 相似文献
9.
Andrs Grriz María E. Gonzalez María Marina Oscar A. Ruiz Fernando L. Pieckenstain 《Mycological Research》2008,112(3):414-422
A study on polyamine metabolism and the consequences of polyamine biosynthesis inhibition on the development of Sclerotinia sclerotiorum sclerotia was conducted. Concentrations of the triamine spermidine and the tetramine spermine, as well as ornithine decarboxylase and S-adenosyl-methionine decarboxylase activities, decreased during sclerotia maturation. In turn, the concentration of the diamine putrescine was reduced at early stages of sclerotial development but it increased later on. This increment was not related to de novo biosynthesis, as demonstrated by the continuous decrease in ornithine decarboxylase activity. Alternatively, it could be explained by the release of putrescine from the conjugated polyamine pool. α-Difluoro-methylornithine and cyclohexylamine, which inhibit putrescine and spermidine biosynthesis, respectively, decreased mycelial growth, but did not reduce the number of sclerotia produced in vitro even though they disrupted polyamine metabolism during sclerotial development. It can be concluded that sclerotial development is less dependent on polyamine biosynthesis than mycelial growth, and that the increase of free putrescine is a typical feature of sclerotial development. The relationship between polyamine metabolism and sclerotial development, as well as the potential of polyamine biosynthesis inhibition as a strategy for the control of plant diseases caused by sclerotial fungi are discussed. 相似文献
10.
11.
Polyamine metabolism and its regulation 总被引:20,自引:1,他引:20
Antonio F. Tiburcio Teresa Altabella Antoni Borrell Carles Masgrau 《Physiologia plantarum》1997,100(3):664-674
12.
The effects of submergence on chlorophyll (Chl) a fluorescence were compared in seven Oryza sativa (L.) cultivars, namely FR 13A, Khoda, Khadara, Kalaputia (tolerant), Sabita, and Hatipanjari (avoiding type), and IR 42 (susceptible).
Seedlings were submerged for 4 d under complete darkness. Oxygen concentration of flood water decreased with the period of
submergence with concomitant increase in concentration of carbon dioxide. Submergence caused diminution in the amount of total
Chl. Genotypic differences were observed for Chl content and survival percentage. Quantification of the Chl a fluorescence transients (JIP-test) revealed large cultivar differences in the response of photosystem 2 (PS2) to submergence.
The kinetics of Chl a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by submergence. The
selective suppression of the J-I phase of fluorescence especially after 2 d of submergence provided evidence for weakened
electron donation from the oxygen evolving complex whereas under severe submergence stress (4 d) both O-J and J-I steps were
suppressed greatly with highly suppressed P-step, which resulted in lowering of variable fluorescence. Grouping probability
or energetic connectivity between PS2 obtained through JIP-test from the data after 2 d of submergence showed a direct relation
with survival percentage, i.e. fluorescence measurements contained the information of the survival chance of a plant under submerged conditions. The information
could be used in identifying the submergence tolerant cultivars when the damage is not very severe. 相似文献
13.
We studied in the seedlings of two rice cultivars (Malviya-36 and Pant-12) the effect of increasing levels of arsenic in situ on the content of sugars and the activity of several enzymes of starch and sucrose metabolism: alpha-amylase (EC 3.2.1.1), beta-amylase (EC 3.2.1.2), starch phosphorylase (EC 2.4.1.1), acid invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14). During a growth period of 10-20 d As2O3 at 25 and 50 microM in the growth medium caused an increase in reducing, non-reducing and total soluble sugars. An increased conversion of non-reducing to reducing sugars was observed concomitant with As toxicity. The activities of alpha-amylase, beta-amylase and sucrose phosphate synthase declined, whereas starch phosphorylase, acid invertase and sucrose synthase were found to be elevated. Results indicate that in rice seedlings arsenic toxicity causes perturbations in carbohydrate metabolism leading to the accumulation of soluble sugars by altering enzyme activity. Sucrose synthase possibly plays a positive role in synthesis of sucrose under As-toxicity. 相似文献
14.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed. 相似文献
15.
16.
Summary The major objective of this study was to determine if the observed changes in polyamines and their biosynthetic enzymes during
somatic embryo development were specifically related to either the stage of the embryo development or to the duration of time
spent on the maturation medium. Somatic embryos of red spruce (Picea rubens) at different developmental stages, grown in the embryo development and maturation media for various lengths of time, were
separated from the associated subtending tissue (embryogenic and the suspensor cell masses) and analyzed for their polyamine
content as well as for polyamine biosynthetic enzyme activities. Polyamine content was also analyzed in embryos representing
different stages of developmentthat were collected from the sam culture plate at the same time and the subtending tissue surrouding
them. Putrescine was the predominant polyamine in the pro-embryogenic tissue, while spermidine was predominant during embryo
development. Significant changes in spermidine/putrescine and spermine/putrescine ratios were observed at all stages of embryo
development as compared to the pro-embryogenic cell mass. Changes in the ratios of various polyamines were clearly correlated
with the developmental stage of the embryo rather than the period of growth in the maturation medium. Whereas the activities
of both ornithine decarboxylase and arginine decarboxylase increased by week 3 or 4 and stayed high during the subsequent
6 wk of growth, the activity of S-adenosylmethionine decarboxylase steadily declined during embryo development. 相似文献
17.
18.
We investigated the effects of agents known to affect cellular glutathione (reduced form, GSH) levels on the growth of rice seedlings treated with Cd. CdCl2 was more effective than CdSO4 in inhibiting root growth. However, CdCl2 had no effect on shoot growth. GSH, a substrate for phytochelatin synthesis, was effective in counteracting growth inhibition of roots by CdCl2. Root growth in the CdCl2 medium was found also to be enhanced by the addition of L-glutamic acid and L-cysteine, both of which are substrates for GSH formation. Buthionine sulfoximine, an inhibitor of GSH synthesis, rendered the roots susceptible to growth inhibition by Cd. Our results suggest that GSH level may play a role in regulating Cd-inhibited growth of rice roots.Abbreviations BSO
buthionine sulfoximine
- GSH
reduced form glutathione 相似文献
19.
Naoto Inoue Teruo Arase Motoyuki Hagiwara Takahisa Amano Taiichi Hayashi Ryoichi Ikeda 《Ecological Research》1999,14(1):31-38
How plant seeds secure root penetration into soil to obtain good seedling establishment is one of the basic ecological problems. In this study, seminal root growth was investigated to clarify the cause of varietal difference of seedling establishment in direct seeding of rice in flooded paddy fields, with special reference to root tip rotation. In a field experiment, seedling establishment percentage had a weak correlation with seminal root elongation rate but was not correlated with apparent seedling weight in water, which has been reported to be the cause of floating seedlings resulting in poor seedling establishment. Root tip rotation was analyzed for indoor-grown seedlings using spectrum analysis: the maximum entropy method (MEM) was used. Maximum entropy method power spectrum analysis clarified that maximum MEM power density (practically corresponds to spiral angle) detected in the frequency range above 0.1 cycles mm-1 was highly and positively correlated to seedling establishment percentage in the field experiment. Maximum MEM power density in high correlation with seedling establishment was mostly found around frequencies of 0.2 cycles mm–1, which corresponded to 2.0–3.4 cycles of root tip rotation per day. From these results, root tip rotation (circumnutation) with a larger spiral angle was suggested to play an important role in the establishment of rice seedlings on flooded and very soft soil. A possible explanation for why a larger spiral angle was advantageous for seedling establishment is that if buoyancy and seedling weight are constant, a larger pushing force of the seminal root is available without causing floating of a seedling, due to the upward force being a reaction of the seminal root pushing force. 相似文献
20.
E. Garin G. Grenier-De March E. Grenier J. Martin-Tanguy 《Plant Growth Regulation》1995,16(3):279-286
A study of the polyamine profile was carried out during zygotic embryo development in Prunus avium. Zygotic embryos were collected from 2 donor trees and sorted into 3 size classes: C1 [2.5 to 3.5 mm]; C2 [3.6 to 4.5 mm] and C3 [5.5 to 7 mm]. Evolution of the various polyamines was similar for the two donor trees. Changes in the relative amount of the various free polyamines were observed during zygotic embryo development. Agmatine and spermine levels increased from C1 to C3. Spermidine, the predominant polyamine, showed a two-fold decrease in C3 compared with C1 and C2; the evolution of putrescine was opposed, showing an increase in the last developmental stage. The putrescine/spermidine ratio could be a marker for these 3 developmental stages with a higher ratio in C3 compared with C1 and C2. Polyamine changes in cotyledons from class C1 were investigated during in vitro culture. A 10-day induction on a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin caused a strong decline in free spermidine levels and a dramatic increase in free putrescine. The formation of conjugated putrescine occurred simultaneously, and twenty days after removal of growth regulators, the various polyamine contents were still at the same level.Abbreviations Agm
agmatine
- Dap
diaminopropane
- 2,4-D
2,4-dichlorophenoxyacetic acid
- Put
putrescine
- Spd
spermidine
- Spm
spermine 相似文献