首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi.  相似文献   

2.
Zhong Y  Yu H  Wang X  Lu Y  Wang T 《Molecular biology reports》2011,38(6):4145-4151
Agrobacterium-mediated T-DNA transfer has been proven to be an efficient strategy for insertional mutagenesis and elucidation of gene function in filamentous fungi. The implementation of large-scale T-DNA insertional mutagenesis requires the development of high-efficient transformation and high-throughput screening procedures. Here, using green fluorescent protein (GFP) as a vital marker, a highly efficient T-DNA-based mutagenesis and screening system was developed in Trichoderma reesei. The uridine auxotrophic T. reesei M23 as the host was transformed with A. tumefaciens EH105 strain harboring a binary vector pC-OEP, which beared the pyrG gene for primary selection on minimal medium without uridine and the egfp gene for fluorescence-based rapid screening of the mitotically stable transformants. The efficiency of transformation was up to 10–20 transformants per 105 target conidia. Microscopic examination revealed strong GFP expression and fluorescence emission in conidia, growing hyphae and mycelia. An effective and convenient screening procedure using 96-well plates and multilabel counter for fluorescence intensity counting was developed to rapidly identify the T-DNA tagged T. reesei mutants. Furthermore, the presence of T-DNA integration at random sites in the genome was confirmed by Southern blot analysis. This report of the T-DNA-based mutagenesis and rapid screening system using GFP as a vital reporter provides a promising strategy to speeding up the genome-scale T-DNA insertional mutagenesis and functional genomics analysis of this cellulolytic fungus T. reesei.  相似文献   

3.
Dothistroma septosporum is the causal agent of Dothistroma needle blight of pine trees. A novel green fluorescent protein (GFP)-based screening method was developed to assess the potential of microorganisms for biocontrol of Dothistroma. The screen utilizes GFP expression as an indicator of metabolic activity in the pathogen and hygromycin resistance selection to determine if the interaction is fungistatic or fungicidal. Results suggested that six of eight Trichoderma isolates tested have the potential to control Dothistroma in vitro, via a fungicidal action. Because D. septosporum produces a broad-spectrum toxin, dothistromin, the inhibition of Trichoderma spp. by D. septosporum was determined by growth rate measurements compared to controls. Inhibition of the Trichoderma spp. ranged from no inhibition to 30% inhibition and was influenced by the assay medium used. The GFP screening method was also assessed to determine if it was suitable for screening bacteria as potential biocontrol candidates. Although a method involving indirect-contact had to be used, two of four Bacillus strains showed antagonistic activity against D. septosporum in vitro, via a fungistatic interaction. The four bacterial strains inhibited D. septosporum growth by 14.0 to 39.8%. This GFP-based method represents a novel approach to screening fungi and bacteria for antagonistic activity.  相似文献   

4.
The gene pdi1 encoding protein disulphide isomerase was isolated from the filamentous fungus Trichoderma reesei by degenerate PCR based on a consensus PDI active-site sequence. It was shown that the Trichoderma pdi1 cDNA is able to complement a yeast mutant with a disrupted PDI1 gene. The putative T. reesei PD1I protein has a predicted 20-amino acid N-terminal signal sequence and the C-terminal fungal consensus ER retention signal HDEL. The mature protein shows strong conservation relative to other fungal protein disulphide isomerases. The T. reesei pdi1 promoter has two possible unfolded protein response (UPR) elements and it was shown by treatments with dithiothreitol and tunicamycin that the gene is under the control of the UPR pathway. Expression of a heterologous protein, an IgG antibody Fab fragment, in Trichoderma increases pdi1 expression, probably by inducing the UPR. The level of T. reesei pdi1 mRNA is also regulated by the carbon source, being lowest in glucose-containing media and highest on carbon sources that induce the genes encoding extracellular enzymes. The mechanism of this regulation was studied by examining pdi1 mRNA levels under conditions where the extracellular enzymes are induced by sophorose, as well as in the strain RutC-30, which is mutant for the glucose repressor gene cre1. The results suggest that neither sophorose induction nor glucose repression by the CREI protein affect the pdi1 promoter directly.  相似文献   

5.
The neutral endo-β-glucanase gene cel5A from Humicola insolens was cloned and connected with the cellobiohydrolase 1 promoter from Trichoderma reesei to construct a recombinant plasmid pCB-hEG with the hygromycin B resistance marker. The plasmid was introduced into conidia of T. reesei using the Agrobacterium tumefaciens mediated transformation method. Eight transformants were obtained on screening plates with sodium carboxymethyl cellulose as the sole carbon source. Stable integration of the cel5A gene into the chromosomal DNA of T. reesei was confirmed by PCR. An obvious protein band (approximately 52 kDa) was detected by SDS-PAGE from fermentation broth, which showed that the cel5A gene in recombinant T. reesei successfully fulfilled efficient expression and extracellular secretion. After 96 h shaking-flask fermentation, the endo-β-glucanase activity at pH 6.5 from recombinant T. reesei reached 3,068 U/ml, which was 11 times higher than that of the host strain. In a 2 m3 fermenter, the endo-β-glucanase activity could be further increased to 8,012 U/ml after 96 h fermentation. The results showed a good prospect for application of neutral endo-β-glucanase in the textile industry.  相似文献   

6.
7.
Trichoderma species are widely used in agriculture as biofungicides. These fungi are rich source of secondary metabolites and the mycoparasitic species are enriched in genes for biosynthesis of secondary metabolites. Most often, genes for secondary metabolism are clustered in fungal genomes. Previously, no systematic study was undertaken to identify the secondary-metabolism related gene clusters in Trichoderma genomes. In the present study, a survey of the three Trichoderma genomes viz. T. reesei, T. atroviride and T. virens, was made to identify the putative gene clusters associated with secondary metabolism. In T. reesei genome, we identified one new NRPS and 6 new PKS clusters, which is much less than that found in T. atroviride (4 and 8) and T. virens (8 and 7). This work would pave the way for discovery of novel secondary metabolites and pathways in Trichoderma.  相似文献   

8.
Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.  相似文献   

9.
Trichoderma reesei is the preferred organism for producing industrial cellulases. However, cellulases derived from T. reesei have their highest activity at acidic pH. When the pH value increased above 7, the enzyme activities almost disappeared, thereby limiting the application of fungal cellulases under neutral or alkaline conditions. A lot of heterologous alkaline cellulases have been successfully expressed in T. reesei to improve its cellulolytic profile. To our knowledge, there are few reports describing the co-expression of two or more heterologous cellulases in T. reesei. We designed and constructed a promoter collection for gene expression and co-expression in T. reesei. Taking alkaline cellulase as a reporter gene, we assessed our promoters with strengths ranging from 4 to 106 % as compared to the pWEF31 expression vector (Lv D, Wang W, Wei D (2012) Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67(1):67–71). The promoter collection was used in a proof-of-principle approach to achieve the co-expression of an alkaline endoglucanase and an alkaline cellobiohydrolase. We observed higher activities of both cellulose degradation and biostoning by the co-expression of an endoglucanase and a cellobiohydrolase than the activities obtained by the expression of only endoglucanase or cellobiohydrolase. This study makes the process of engineering expression of multiple genes easier in T. reesei.  相似文献   

10.
11.
To investigate whether enzyme production can be enhanced in the Trichoderma reesei industrial hyperproducer strain RUT C30 by manipulation of cellulase regulation, the positive regulator Xyr1 was constitutively expressed under the control of the strong T. reesei pdc promoter, resulting in significantly enhanced cellulase activity in the transformant during growth on cellulose. In addition, constitutive expression of xyr1 combined with downregulation of the negative regulator encoding gene ace1 further increased cellulase and xylanase activities. Compared with RUT C30, the resulting transformant exhibited 103, 114, and 134 % greater total secreted protein levels, filter paper activity, and CMCase activity, respectively. Surprisingly, strong increases in xyr1 basal expression levels resulted in very high levels of CMCase activity during growth on glucose. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression, and suggest an attractive new single-step approach for increasing total cellulase productivity in T. reesei.  相似文献   

12.
microRNAs (miRNAs) are non-coding small RNAs (sRNAs) capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs) were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN) and non-induction (CON) were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.  相似文献   

13.
Trypanosoma cruzi is the etiological agent of Chagas disease, an illness that affects about 10 million people, mostly in South America, for which there is no effective treatment or vaccine. In this context, transgenic parasites expressing reporter genes are interesting tools for investigating parasite biology and host-parasite interactions, with a view to developing new strategies for disease prevention and treatment. We describe here the construction of a stably transfected fluorescent T. cruzi clone in which the GFP gene is integrated into the chromosome carrying the ribosomal cistron in T. cruzi Dm28c. This fluorescent T. cruzi produces detectable amounts of GFP only at replicative stages (epimastigote and amastigote), consistent with the larger amounts of GFP mRNA detected in these forms than in the non replicative trypomastigote stages. The fluorescence signal was also strongly correlated with the total number of parasites in T. cruzi cultures, providing a simple and rapid means of determining the growth inhibitory dose of anti-T.cruzi drugs in epimastigotes, by fluorometric microplate screening, and in amastigotes, by the flow cytometric quantification of T. cruzi-infected Vero cells. This fluorescent T. cruzi clone is, thus, an interesting tool for unbiased detection of the proliferating stages of the parasite, with multiple applications in the genetic analysis of T. cruzi, including analyses of host-parasite interactions, gene expression regulation and drug development.  相似文献   

14.
This paper describes the characterization of an intracellular β-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific β-glucosidase, having no β-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this β-glucosidase.  相似文献   

15.
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores'' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore''s genome is free of damage.  相似文献   

16.
Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species.  相似文献   

17.
Lv D  Wang W  Wei D 《Plasmid》2012,67(1):67-71
We report the construction of two filamentous fungi Trichoderma reesei expression vectors, pWEF31 and pWEF32. Both vectors possess the hygromycin phosphotransferase B gene expression cassette and the strong promoter and terminator of the cellobiohydrolase 1 gene (cbh1) from T. reesei. The two newly constructed vectors can be efficiently transformed into T. reesei with Agrobacterium-mediated transformation. The difference between pWEF31 and pWEF32 is that pWEF32 has two longer homologous arms. As a result, pWEF32 easily undergoes homologous recombination. On the other hand, pWEF31 undergoes random recombination. The applicability of both vectors was tested by first generating the expression vectors pWEF31-red and pWEF32-red and then detecting the expression of the DsRed2 gene in T. reesei Rut C30. Additionally, we measured the exo-1,4-β-glucanase activity of the recombinant cells. Our work provides an effective transformation system for homologous and heterologous gene expression and gene knockout in T. reesei. It also provides a method for recombination at a specific chromosomal location. Finally, both vectors will be useful for the large-scale gene expression industry.  相似文献   

18.
The Trichoderma reesei xln2 gene coding for the pI 9.0 endoxylanase was isolated from the wild-type strain QM6a. The gene contains one intron of 108 nucleotides and codes for a protein of 223 amino acids in which two putative N-glycosylation target sites were found. Three different T. reesei strains were transformed by targeting a construct composed of the xln2 gene, including its promoter, to the endogenous cbh1 locus. Highest overall production levels of xylanase were obtained using T. reesei ALK02721, a genetically engineered strain, as a host. Integration into the cbh1 locus was not required for enhanced expression under control of the xln2 promoter.  相似文献   

19.
The gene pdi1 encoding protein disulphide isomerase was isolated from the filamentous fungus Trichoderma reesei by degenerate PCR based on a consensus PDI active-site sequence. It was shown that the Trichoderma pdi1 cDNA is able to complement a yeast mutant with a disrupted PDI1 gene. The putative T. reesei PD1I protein has a predicted 20-amino acid N-terminal signal sequence and the C-terminal fungal consensus ER retention signal HDEL. The mature protein shows strong conservation relative to other fungal protein disulphide isomerases. The T. reesei pdi1 promoter has two possible unfolded protein response (UPR) elements and it was shown by treatments with dithiothreitol and tunicamycin that the gene is under the control of the UPR pathway. Expression of a heterologous protein, an IgG antibody Fab fragment, in Trichoderma increases pdi1 expression, probably by inducing the UPR. The level of T. reesei pdi1 mRNA is also regulated by the carbon source, being lowest in glucose-containing media and highest on carbon sources that induce the genes encoding extracellular enzymes. The mechanism of this regulation was studied by examining pdi1 mRNA levels under conditions where the extracellular enzymes are induced by sophorose, as well as in the strain RutC-30, which is mutant for the glucose repressor gene cre1. The results suggest that neither sophorose induction nor glucose repression by the CREI protein affect the pdi1 promoter directly. Received: 4 May 1998 / Accepted: 23 April 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号