首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ozone (O3) biomonitoring system based on sensitive (S156) and resistant (R123) genotypes of snap bean (Phaseolus vulgaris L.), was tested in a fumigation experiment, with the aim of: (i) assessing the performance of the S156/R123 system under simulated climatic conditions and O3 levels often found in Mediterranean sites; (ii) contributing to identify possible ecophysiological mechanisms determining the different O3 sensitivity of S156 and R123, along different plant growth stages. In contrast with what reported by other authors, differences in stomatal O3 uptake were evident between sensitive and resistant plants. In particular, R123 plants showed an O3-induced stomatal closure (−38.1% than the control) during flowering and the onset of visible injury, a behaviour that can be regarded as an O3 avoidance mechanism. At the end of the fumigation period (AOT40 = 4.66 ppm h), despite the reduction of assimilation and the photoprotective down regulation of PSII photochemistry, the capacity to reduce the final electron acceptors beyond PSI was up-regulated, particularly in S156, while the PSI activity remained constant in both genotypes, an unusual response to O3 stress. Increased energy demand for maintenance and repair processes also determined increased dark respiration rates (Rd) in all fumigated plants; nocturnal stomatal conductance (gsN) was also enhanced, differently in the two genotypes, with possible implication for higher nocturnal stomatal uptake of S156 in field conditions. No clear genotype × O3 effect was instead detected on pod biomass, although a significant O3-induced reduction of yield was evident in both genotypes.  相似文献   

2.
Photosynthetic functions have been investigated in ozone stressed (200 ppb, 5 h) Melissa officinalis plants at the end of fumigation and 24 and 48 h after. Plants exhibited foliar injury and membrane permeability was significantly increased, indicating that there was membrane damage. After the end of treatment, CO2 fixation capacity decreased and this lasted during the recovery period (until a maximum of −63% when compared to controls). These strong negative effects on photosynthetic ability were observed to be due both to stomatal and mesophyllic limitations, since stomatal conductance decreased (−23%) and intercellular CO2 concentration significantly increased (+41%). Reduction in PSII efficiency is evidenced by (i) decrease of Fv/F0 (−11.4%), indicating a partial inhibition at PSII donor side; (ii) significant correlation between the apparent electron transport rate through PSII and photosynthetic activity, suggesting that the O3-induced effects are well established, as demonstrated by the development of leaf necrosis; (iii) increase in electrons required to fix one molecule of CO2, showing a decrease in activity of photosynthetic enzymes and their ability to fix CO2 in the presence of O3; (iv) decrease of qL, resulting in an increase in the PSII excitation pressure. On the other hand, a regulatory adjustment of PSII efficiency was highlighted by (i) higher value of qNP, abling to counteract the negative effects of O3 at chloroplast level because of their capacity to dissipate the excess of excitation energy; (ii) increase of the xanthophyll cycle pool size and DEPS index, showing a marked activation of photoprotective mechanisms. This represents an active response that M. officinalis initiates to cope with increased oxidative load.  相似文献   

3.
《BBA》2014,1837(2):315-325
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810 nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4 · O2 evolution) which arrived at the PSI donor side after a delay of 2 ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712 nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment–protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI = 0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII = 0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145–155). At wavelengths less than 580 nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment–protein complexes.  相似文献   

4.
In a previous study, we found that enhanced CO2 subjected to nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4 °C) and water availability regimes could protect PSII from photodamage. The main objective of this study was to determine the mechanism(s) involved in the photoprotection of PSII at elevated CO2 levels in this plant. Elevated CO2 reduced carboxylation capacity-induced photosynthetic acclimation and reduced enzymatic and/or nonenzymatic antioxidant activities, suggesting that changes in electron flow did not cause any photooxidative damage (which was also confirmed by H2O2 and lipid peroxidation analyses). Enhanced nonphotochemical quenching and xanthophyll cycle pigments revealed that plants grown at 700 μmol mol−1 CO2 compensated for the reduction in energy sink with a larger capacity for nonphotochemical dissipation of excitation energy as heat, i.e., modulating the status of the VAZ components. Elevated CO2 induced the de-epoxidation of violaxanthin to zeaxanthin, facilitating thermal dissipation and protecting the photosynthetic apparatus against the deleterious effect of excess excitation energy.  相似文献   

5.
In a previous study, we found that enhanced CO2 subjected to nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4 °C) and water availability regimes could protect PSII from photodamage. The main objective of this study was to determine the mechanism(s) involved in the photoprotection of PSII at elevated CO2 levels in this plant. Elevated CO2 reduced carboxylation capacity-induced photosynthetic acclimation and reduced enzymatic and/or nonenzymatic antioxidant activities, suggesting that changes in electron flow did not cause any photooxidative damage (which was also confirmed by H2O2 and lipid peroxidation analyses). Enhanced nonphotochemical quenching and xanthophyll cycle pigments revealed that plants grown at 700 μmol mol?1 CO2 compensated for the reduction in energy sink with a larger capacity for nonphotochemical dissipation of excitation energy as heat, i.e., modulating the status of the VAZ components. Elevated CO2 induced the de-epoxidation of violaxanthin to zeaxanthin, facilitating thermal dissipation and protecting the photosynthetic apparatus against the deleterious effect of excess excitation energy.  相似文献   

6.
《Small Ruminant Research》2007,72(1-3):179-193
Black locust (BL; Robinia pseudoacacia L.), a native tree of southeastern USA known to contain substantial levels of condensed tannins (CT), was fed to 32, 4 month old (20.4 kg BW) Boer cross wether goats in two randomized complete block design trials. The objectives were to examine the effects of feeding hay diets containing several levels of fresh BL foliage on intake, digestibility, and N metabolism. First year (1999) diets were HE (100% Eastern gamagrass [EGH; Tripsacum dactyloides L.] hay), HEG (70% EGH and a 30% mixture of 59% ground corn [GC; Zea mays L.], 36% soybean meal [SBM; Glycine max L.], and 5% minerals), 25BL99 (75% EGH and 25% BL leaves), and 50BL99 (50% EGH and 50% BL leaves). Second year (2000) diets were HO (100% orchardgrass [OGH; Dactylis glomerata L.] hay), HOG (70% OGH and a 30% mixture of 63% GC, 37% SBM, and 5% minerals), 50BL00 (50% OGH and 50% BL leaves), and 75BL00 (25% OGH and 75% BL leaves). In 1999, apparent digestibilities of the diets in the order listed above were 62.4, 68.2, 58.0, and 60.6% (P = 0.001) for DM and 62.8, 72.5, 56.0, and 59.1% (P = 0.001) for crude protein (CP). Acid detergent lignin digestibilities were negative for diets 25BL99 (−56.7%) and 50BL99 (−49.3%), apparently due to the formation of insoluble tannin and lignin complexes during passage through the digestive tract. Intakes of DM were similar across diets. In 2000, apparent digestibilities of diet DM (64.4, 71.7, 64.8 and 65.4%) and CP (70.0, 76.0, 66.6, and 66.5%) did not differ. Lignin digestibilities were positive for diets 50BL00 (9.4%) and 75BL00 (29.6%) unlike those for year 1999. Overall, BL contained 10% CT and 18–34% hydrolyzable tannins. In 1999, N intake, urinary N (UN) excretion and N retained were higher for diet HEG (P = 0.01) than diet HE whereas fecal N excretion (FN) was similar for diets HEG, 25BL99 and 50BL99. In 1999, FN excretion as a percentage of N intake was higher (P < 0.02) in the BL diets, although UN as a percentage of N intake did not differ among diets. In 2000, N intake and FN output were higher for BL diets compared to diets HO (P = 0.01) and HOG (P = 0.02). Fecal N as a percentage of N intake was lower (P = 0.01) for diet HOG (24.0%) than for diets 50BL00 (33.4%) and 75BL00 (33.5%). Conversely, urinary N as a percentage of N intake was higher for diets HO and HOG compared to the BL diets (P = 0.02). Increased levels of dietary BL increased FN, suggesting that tannins formed insoluble protein complexes thus hindering digestibility.  相似文献   

7.
Plant responses to warming, elevated CO2, and changes in summer precipitation patterns involve complex interactions. In this study we aim to reveal the single factor responses and their interactive effects on photosystem II (PSII) performance during an autumn-to-winter period. The study was carried out in the CLIMAITE multifactor experiment, which includes the combined impact of elevated CO2 (free air carbon enrichment; CO2), warming (passive nighttime warming; T) and summer drought (rain-excluding curtains; D) in a temperate heath ecosystem. PSII performance was probed by the effective quantum yield in light, Fv′/Fm′, using the pulse amplitude methodology, and the total performance index, PItotal, which integrate changes of the chlorophyll-a fluorescence transient including the maximal quantum yield in darkness, Fv/Fm.Decreasing temperature during autumn linearly reduced PItotal, both in the wavy hair-grass, Deschampsia flexuosa, and in the evergreen dwarf shrub common heather, Calluna vulgaris, and following freezing events the PItotal and Fv′/Fm′ were reduced even more. Contrary to expected, indirect effects of the previous summer drought reduced PSII performance before freezing events, particularly in Calluna. In combinations with elevated CO2 interactive effects with drought, D × CO2 and warming, T × D × CO2, were negatively skewed and caused the reduction of PSII performance in both species after occurrence of freezing events. Neither passive nighttime warming nor elevated CO2 as single factors reduced PSII performance via incomplete cold hardening as hypothesized. Instead, the passive nighttime warming strongly increased PSII performance, especially after freezing events, and when combined with elevated CO2 a strongly skewed positive T × CO2 interactive effect was seen. This indicates that these plants take advantage of the longer growing season induced by the warming in elevated CO2 until a winter frost period becomes permanent. However, if previously exposed to summer drought this positive effect reverses via interactive D × CO2 and T × D × CO2 effects immediately after freezing events, causing the full combination of TDCO2 not to differ from the control.In a future warmer climate with high CO2 and summer drought, the occurrence of freezing events thus seem highly decisive for reducing PSII performance in the autumn-to-winter period. Such a reduced robustness of PSII performance may be highly decisive for the magnitude of the late season photosynthetic carbon uptake and reduce the growing season length in these temperate heath plants.  相似文献   

8.
The aim of the present study was to evaluate the effect of two different oxygen (O2) concentrations on survival and development of preantral follicles of goats cultured in vitro. Preantral ovarian follicles (≥150 μm) were isolated from ovarian cortex fragments of goats and individually cultured for 30 days under two different O2 concentrations (5% and 20% O2). Follicle development was evaluated on the basis of antral cavity formation, increase in follicular diameter, presence of healthy cumulus oocyte complexes and fully grown oocytes. Results showed with progression of culture period from 6 to 12 days, a decrease in follicular survival was observed in both O2 concentrations (P < 0.05). When the O2 tensions were compared to each other in the different days of culture, 20% O2 was more efficient in promoting an increase in follicular diameter from day 24 of culture onward than 5% O2 (P < 0.05). However, follicles cultured with 5% O2 had an increased percentage of antrum formation from 12 days to the end of culture, compared with 20% O2 (P < 0.05). Moreover, there was no difference in percentage of fully developed oocytes with the different O2 tensions. However, only oocytes (16.7%) from follicles cultured in 20% O2 resumed meiosis. In conclusion, concentration of 20% O2 was more efficient in promoting follicular growth and oocyte meiosis resumption from preantral follicles of goats when grown in vitro.  相似文献   

9.
Plants use a small part of the total absorbed light energy for net carboxylation, while the remaining amount is dissipated via alternative pathways involving thermal processes, fluorescence and non-carboxylation photochemistry in order to limit the formation of reactive oxygen species (ROS) and other photooxidative risks. The commonly used analysis of the Photosystem II (PSII) fluorescence signals gives qualitative information about absorbed light energy management by plants, but it is difficult to appreciate the relative contribution of each pathway in energy partitioning.This study reports the application of quenching partitioning through a chlorophyll fluorescence approach performed on peach leaves subjected to three different light intensities for four durations of exposure in absence of recovery from photo-damage. This methodology was compared with the P700 redox kinetic method for determining the functional PSII fraction in leaves. In the absence of recovery processes the active PSII concentration decayed with an increase in photon exposure (the product of irradiance and the time of exposure), following an exponential pattern according to the reciprocity law. The photoprotective thermal dissipation (ΦNPQ) was proportional to irradiance up to 30 min of photoinhibitory treatment. Afterwards ΦNPQ was limited by the increasing competition for the absorbed energy re-emitted by the inactive PSII (ΦNF). ΦNF increased with the photon exposure dissipating up to 70% of the total incoming energy. The energy funnelled to photochemistry (ΦPSII) decreased with increasing exposure time or intensity, becoming zero after 120 min of photoinhibitory treatment at the maximum irradiance (2100 μmol photon m−2 s−1). The relation between the fraction of energy dissipated by the inactive PSII (derived from the quenching partitioning) and the inactive PSII fraction (measured with the P700 redox kinetic method) was linear.The quenching partitioning through light-modulated chlorophyll fluorescence is a useful tool to analyse plant energy management and gives also a reasonable estimation of the active PSII fraction. This methodology can easily be used in the field as measurements are rapid, non-destructive and detection devices are portable.  相似文献   

10.
The anion nitrate—abundant in our diet—has recently emerged as a major pool of nitric oxide (NO) synthase-independent NO production. Nitrate is reduced stepwise in vivo to nitrite and then NO and possibly other bioactive nitrogen oxides. This reductive pathway is enhanced during low oxygen tension and acidosis. A recent study shows a reduction in oxygen consumption during submaximal exercise attributable to dietary nitrate. We went on to study the effects of dietary nitrate on various physiological and biochemical parameters during maximal exercise. Nine healthy, nonsmoking volunteers (age 30 ± 2.3 years, VO2max 3.72 ± 0.33 L/min) participated in this study, which had a randomized, double-blind crossover design. Subjects received dietary supplementation with sodium nitrate (0.1 mmol/kg/day) or placebo (NaCl) for 2 days before the test. This dose corresponds to the amount found in 100–300 g of a nitrate-rich vegetable such as spinach or beetroot. The maximal exercise tests consisted of an incremental exercise to exhaustion with combined arm and leg cranking on two separate ergometers. Dietary nitrate reduced VO2max from 3.72 ± 0.33 to 3.62 ± 0.31 L/min, P < 0.05. Despite the reduction in VO2max the time to exhaustion trended to an increase after nitrate supplementation (524 ± 31 vs 563 ± 30 s, P = 0.13). There was a correlation between the change in time to exhaustion and the change in VO2max (R2 = 0.47, P = 0.04). A moderate dietary dose of nitrate significantly reduces VO2max during maximal exercise using a large active muscle mass. This reduction occurred with a trend toward increased time to exhaustion implying that two separate mechanisms are involved: one that reduces VO2max and another that improves the energetic function of the working muscles.  相似文献   

11.
Rheumatoid arthritis (RA) is a chronic disease. It causes chronic inflammation of the joint. Recent studies suggested that interleukin 4 (IL4) contributes to susceptibility and severity of rheumatoid arthritis (RA). Especially, it was reported that promoter polymorphism (−590, T/C) of IL4 gene has been associated with susceptibility of RA. The aim of present study was to investigate whether the promoter polymorphism (−590, T/C) of IL4 gene is associated with the susceptibility of RA using meta-analysis. And in order to perform meta-analysis, comprehensive meta analysis program was used. Genetic models (co-dominant, dominant, recessive, and allele) were used to determine odds ratios (ORs), 95% confidence intervals (CIs), and P values. Nine case-control studies with case and control design were included in this meta-analysis. Overall, meta-analysis revealed a strong association with susceptibility of RA [OR = 1.303, 95% CI = 1.093–1.554, P = 0.003 in allele model (C vs. T); OR = 1.247, 95% CI = 1.054–1.474, P = 0.010 in dominant model (CC vs. CT + TT); OR = 2.148, 95% CI = 1.263–3.651, P = 0.005 in recessive model (CC + CT vs. TT)]. Our data demonstrated that promoter polymorphism (−590, T/C) of IL4 gene may be contributed to susceptibility of RA. However, more studies with a larger sample size are needed to provide more precise evidence.  相似文献   

12.
《FEBS letters》2014,588(23):4364-4368
O2 reduction was investigated in photosystem I (PS I) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PS I complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PS I.  相似文献   

13.
BackgroundGeohelminths are parasites that stand out for their prevalence and wide distribution, depending on the soil for their transmission.AimsThe aim of this work was to evaluate the predatory capacity of the fungal isolate of the genus Duddingtonia (CG768) on third stage larvae (L3) of Ancylostoma spp. in beach sand under laboratory conditions.MethodsIn the assay A five treatment groups and 1 control group were formed. The treatment groups contained 5000, 10,000, 15,000, 20,000 or 25,000 chlamydospores of the fungal isolate and 1000 Ancylostoma spp. L3 in pots containing 30 g of sand. The control group (without fungus) contained only 1000 Ancylostoma spp. L3 and distilled water in pots with 30 g of sand.ResultsEvidence of predatory activity was observed at the end of 15 days, where we observed the following percentages of reduction of L3: Group 1 (4.5%); Group 2 (24.5%); Group 3 (59.2%); Group 4 (58.8%); Group 5 (63%). However, difference was noted (p < 0.01) only at concentrations 15,000, 20,000 and 25,000 in relation to control group. In the assay B two groups were formed in Petri dishes of 9 cm in diameter containing agar water 2% medium. In the treated group, each Petri dish contained 500 Ancylostoma spp. L3 and 5 g of sand containing the isolate CG 768 at a concentration of 25,000 chlamydospores/g of sand, and the control group (without fungus) contained only 500 L3. At the end of 7 days the non-predation L3 of Petri dishes using the method of Baermann were recovered. Difference (p < 0.01) between groups on reducing the average number of Ancylostoma spp. L3 (percent reduction of 84%) was observed.ConclusionsThe results of this study confirm earlier work on the efficiency of the Duddingtonia genus in the control of Ancylostoma spp. infective larvae.  相似文献   

14.
Functional roles of an anionic lipid phosphatidylglycerol (PG) were studied in pgsA-gene-inactivated and cdsA-gene-inactivated/phycobilisome-less mutant cells of a cyanobacterium Synechocystis sp. PCC 6803, which can grow only in PG-supplemented media. 1) A few days of PG depletion suppressed oxygen evolution of mutant cells supported by p-benzoquinone (BQ). The suppression was recovered slowly in a week after PG re-addition. Measurements of fluorescence yield indicated the enhanced sensitivity of QB to the inactivation by BQ. It is assumed that the loss of low-affinity PG (PGL) enhances the affinity for BQ that inactivates QB. 2) Oxygen evolution without BQ, supported by the endogenous electron acceptors, was slowly suppressed due to the direct inactivation of QB during 10 days of PG depletion, and was recovered rapidly within 10 h upon the PG re-addition. It is concluded that the loss of high-affinity PG (PGH) displaces QB directly. 3) Electron microscopy images of PG-depleted cells showed the specific suppression of division of mutant cells, which had developed thylakoid membranes attaching phycobilisomes (PBS). 4) Although the PG-depletion for 14 days decreased the chlorophyll/PBS ratio to about 1/4, florescence spectra/lifetimes were not modified indicating the flexible energy transfer from PBS to different numbers of PSII. Longer PG-depletion enhanced allophycocyanin fluorescence at 683 nm with a long 1.2 ns lifetime indicating the suppression of energy transfer from PBS to PSII. 5) Action sites of PGH, PGL and other PG molecules on PSII structure are discussed.  相似文献   

15.
Programed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. This adaptive plant immune response was quantitatively assessed against Tomato Mosaic Virus infection by the following physiological markers; Chlorophyll-a (mg/g), Chlorophyll-b (mg/g), total protein (mg/g), hydrogen peroxide H2O2 (μmol/100 mg), DNA (μg/100 mg), RNA (μg/100 mg), Salicylic acid (μg/g), and Comet Assays. Parameters were assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (⩽1.095 μmol/100 mg) and (⩽3.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = −0.930, P < 0.01) where the P value was <0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus.  相似文献   

16.
Anabaena doliolum subjected to 43, 48, 53 and 58 °C temperature for 1, 2, 3 and 4 h, showed temperature and time-dependent increase in H2O2 production and MDA contents. All the measured enzymes of the antioxidative defense system (SOD, CAT, APX and GR) showed increase in their activities at 43 °C after 1 h of treatment, but at higher temperature their activity declined. The content of antioxidants (ASC, GSH, and α-TOC) increased significantly with rise in temperature as well as duration of treatment. This study clearly demonstrates that when enzymatic defense system becomes inactive, the antioxidants (GSH, and α-TOC) are induced to protect the cyanobacterium from heat stress. One of the major roles of these antioxidants appears to be the protection of PSII as reflected by an effect on O2 evolution up to 53 °C.  相似文献   

17.
New technologies regarding wastewater treatment have been developed. Among these technologies, the moving bed biofilm reactor combined with membrane bioreactor (MBBR-MBR) is a recent solution alternative to conventional processes. This paper presents the results obtained from three wastewater treatment plants working in parallel. The first wastewater treatment plant consisted of a membrane bioreactor (MBR), the second one was a MBBR-MBR system containing carriers both in anoxic and aerobic zones, and the last one consisted of a MBBR-MBR system which contained carriers only in the aerobic zone. The reactors operated with a hydraulic retention time of 26.47 h. During the study, the difference between the experimental plants was not statistically significant concerning organic matter and nutrients removal. However, different tendencies regarding nutrients removal are shown by the three wastewater treatment plants. In this sense, the performances in terms of nitrogen and phosphorus removal of the MBBR-MBR system which contained carriers only in the aerobic zone (67.34 ± 11.22% and 50.65 ± 11.13%, respectively) were slightly better than those obtained from another experimental plants. As a whole, the pilot plant which consisted of a MBR showed better performance from the point of view of the kinetics of the heterotrophic and autotrophic biomass with values of μm,H = 0.00858 h−1, μm,A = 0.07646 h−1, KM = 2.37 mg O2 L−1 and KNH = 1.31 mg N L−1.  相似文献   

18.
《Journal of plant physiology》2014,171(3-4):199-204
Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of 15N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against 15N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 μmol P plant−1 week−1) versus P-deficient (75 μmol P plant−1 week−1) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of 15N over total N content (15N/Nt) for shoots, roots and nodules were determined. The results showed lower 15N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in 15N/Nt in shoots (−0.18%) than in nodules (−0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (−0.33%) and 104 (−0.25%). Nodule 15N/Nt was significantly related to both the quantity of N2 fixed (R2 = 0.96***) and the P content of nodules (R2 = 0.66*). We conclude that the discrimination against 15N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the 15N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation.  相似文献   

19.
N2-fixing alfalfa plants were grown in controlled conditions at different CO2 levels (350 μmol mol?1 versus 700 μmol mol?1) and water-availability conditions (WW, watered at maximum pot water capacity versus WD, watered at 50% of control treatments) in order to determine the CO2 effect (and applied at two water regimes) on plant growth and nodule activity in alfalfa plants. The CO2 stimulatory effect (26% enhancement) on plant growth was limited to WW plants, whereas no CO2 effect was observed in WD plants. Exposure to elevated CO2 decreased Rubisco carboxylation capacity of plants, caused by a specific reduction in Rubisco (EC 4.1.1.39) concentration (11% in WW and 43% in WD) probably explained by an increase in the leaf carbohydrate levels. Plants grown at 700 μmol mol?1 CO2 maintained control photosynthetic rates (at growth conditions) by diminishing Rubisco content and by increasing nitrogen use efficiency. Interestingly, our data also suggest that reduction in shoot N demand (reflected by the TSP and especially Rubisco depletion) affected negatively nodule activity (malate dehydrogenase, EC 1.1.1.37, and glutamate-oxaloacetate transaminase, EC 2.6.1.1, activities) particularly in water-limited conditions. Furthermore, nodule DM and TSS data revealed that those nodules were not capable to overcome C sink strength limitations.  相似文献   

20.
《Journal of plant physiology》2014,171(10):868-875
Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5 mmol L−1) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba × P. berolinensis) to gaseous NO2 (4 μl 1−1) for three time periods (0, 14 and 48 h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48 h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13–15 s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号