首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The levels of circulating IFN in mice infected with Newcastle disease virus (NDV) are regulated by the If-1 locus. In this study we show that in NDV-infected C57BL/6 mice, which carry the If-1h allele and produce high levels of IFN, high levels of both IFN-alpha and -beta mRNA can be detected in the spleen. In contrast, only very low levels of IFN mRNA could be detected in spleens of infected BALB/c mice containing the If-1l allele and producing low levels of IFN or in B6.C-H28c mice that are congenic for the If-1l allele. The relative levels of all individual IFN-alpha 1, alpha 4, and alpha 6 mRNA in spleens of infected BALB/c were lower than in spleens of infected C57BL/6 mice, indicating that the If-1 locus affects the expression of all IFN-alpha subtypes and is not associated with the deletion or inactivation of a specific IFN gene. The relative levels of IFN regulatory factor-1 mRNA in infected mice carrying the If-1l and If-1h loci were comparable, suggesting that the If-1 regulation is not associated with the altered expression of the IFN regulatory factor-1 gene. Quantitative difference in the expression of IFN-alpha and -beta genes was also observed in in vitro-infected peritoneal macrophages isolated from either C57BL/6 or BALB/c mice. A surprise finding was that the If-1 locus also affected the NDV-induced expression of two other cytokine genes, TNF-alpha and IL-6. Priming of the macrophage cultures with murine IFN enhanced the expression of all cytokine genes, and the relative levels of IFN, TNF-alpha, and IL-6 mRNA induced by NDV in macrophages derived from C57BL/6 and BALB/c mice were comparable. We propose that the If-1 locus affects the early stages of a signal transduction pathway which are common to the virus-mediated induction of IFN, TNF-alpha, and IL-6 genes.  相似文献   

3.
4.
PGE(2) has been known to suppress Th1 responses. We studied the difference in strains of mice in PGE(2) production by macrophages and its relation to Th1 activation. Macrophages from BALB/c mice produced greater amounts of PGE(2) than those from any other strains of mice, including C57BL/6, after LPS stimulation. In accordance with the amount of PGE(2) produced, macrophage-derived IL-12 and T cell-derived IFN-gamma production were more strongly suppressed in BALB/c macrophages than in C57BL/6 macrophages. When macrophages were treated with indomethacin or EP4 antagonist, Th1 cytokines were more markedly increased in cells from BALB/c mice than in those from C57BL/6 mice. Although cyclooxygenase-2 was expressed similarly after LPS stimulation in these mouse strains, the release of arachidonic acid and the expression of type V secretory phospholipase A(2) mRNA were greater in BALB/c macrophages. However, exogenous addition of arachidonic acid did not reverse the lower production of PGE(2) by C57BL/6 macrophages. The expression of microsomal PGE synthase, a final enzyme of PGE(2) synthesis, was also greater in BALB/c macrophages. These results indicate that the greater production of PGE(2) by macrophages, which is regulated by secretory phospholipase A(2) and microsomal PGE synthase but not by cyclooxygenase-2, is related to the suppression of Th1 cytokine production in BALB/c mice.  相似文献   

5.
6.
Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H2O2) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.  相似文献   

7.
8.
为观察重组基因疫苗PVAX-MAGE-1的抑瘤效应,构建黑色素瘤抗原-1(melanoma antigen-1,MAGE-1)真核基因表达载体--PVAX-MAGE-1.以重组质粒免疫C57BL/6小鼠后,ELISA法检测表明,与对照鼠(PVAX-1和生理盐水注射小鼠)比较,免疫小鼠脾淋巴细胞上清液中的细胞因子IL-2和IFN-γ明显升高(P0.05);淋巴细胞-肿瘤细胞混合培养证明,免疫小鼠外周血CD8+T细胞对靶细胞的特异性杀伤作用明显增强(P0.05).体内实验证明,PVAX-MAGE-1免疫C57BL/6小鼠,可显著延缓移植性H22腹水瘤及实体瘤在小鼠体内的生长.实验结果提示,重组基因疫苗PVAX-MAGE-1有明显的延缓肿瘤生长的作用,其抑瘤作用与提高T淋巴细胞IL和IFN表达,增强对肿瘤杀伤作用直接相关.  相似文献   

9.
In macrophages from inbred mice, the magnitude of the interferon (IFN) response to Newcastle disease virus (NDV) infection is under genetic control of the If-1 locus, which carries the allele for either high (h) or low (l) IFN production. Here, we report that the activity of genes within the If-1 locus is influenced by macrophage-derived endogenous IFN. In addition to various other biological effects, we observed that endogenous IFN specifically downregulated NDV-induced IFN and interleukin 6 production. Preculture of bone marrow-derived macrophages (BMM) from BALB/c (If-1l) mice in macrophage colony-stimulating factor plus anti-IFN-beta provoked a 30- to 50-fold increase in NDV-induced cytokine production compared with induced control cultures in macrophage colony-stimulating factor alone, whereas only a 4- to 6-fold increase was observed in anti-IFN-beta-treated BMM from C57BL/6 (If-1h) mice. This resulted in nearly complete abrogation of the genetically determined difference in the response to NDV. The increase was specific for NDV and was marked by strong additional activation of IFN-alpha genes. Studies using BMM from B6.C-H28c If-1l congenic mice gave results identical to those obtained with BALB/c BMM. Addition of 20 IU of recombinant IFN-alpha 4 to anti IFN-beta-treated macrophages from B6.C-H28c mice 20 h prior to NDV infection strongly downregulated the IFN-alpha, IFN-beta, and interleukin 6 responses. The genetic difference between macrophages from If-1h and If-1l mice was thus reestablished, since the same treatment caused only weak reduction of NDV-induced cytokine gene expression in BMM from C57BL/6 mice. These data suggest that the If-1h and If-1l alleles harbor IFN-inducible genes that, following activation, specifically suppress subsequent cytokine gene expression in response to NDV.  相似文献   

10.
Murine macrophages have been classified as either susceptible or nonsusceptible to killing by anthrax lethal toxin (LT) depending upon genetic background. While considered resistant to LT killing, we found that bone marrow-derived macrophages (BMMs) from DBA/2, AKR, and C57BL/6 mice were slowly killed by apoptosis following LT exposure. LT killing was not restricted to in vitro assays, as splenic macrophages were also depleted in LT-injected C57BL/6 mice. Human macrophages, also considered LT resistant, similarly underwent slow apoptosis in response to LT challenge. In contrast, LT triggered rapid necrosis and a broad protein release in BMMs derived from BALB/c and C3H/HeJ, but not C57BL/6 mice. Released proteins included processed interleukin-18, confirming reports of inflammasome and caspase-1 activation in LT-mediated necrosis in macrophages. Complete inhibition of caspase-1 activity was required to block LT-mediated necrosis. Strikingly, minimal residual caspase-1 activity was sufficient to trigger significant necrosis in LT-treated macrophages, indicating the toxicity of caspase-1 in this process. IL-18 release does not trigger cytolysis, as IL-18 is released late and only from LT-treated macrophages undergoing membrane perturbation. We propose that caspase-1-mediated macrophage necrosis is the source of the cytokine storm and rapid disease progression reported in LT-treated BALB/c mice.  相似文献   

11.
Chronic LPS inhalation causes submucosal thickening and airway narrowing. To address the hypothesis that environmental airway disease is, in part, a fibroproliferative lung disease, we exposed C57BL/6 mice daily to LPS by inhalation for up to 2 months followed by 1 month of recovery. C57BL/6 mice exposed to daily inhaled LPS had significantly enhanced mRNA expression of TGF-beta1, TIMP-1, fibronectin-1, and pro-collagen types I, III, and IV and show prominent submucosal expression of the myofibroblast markers desmin and alpha-smooth muscle actin. To further characterize global gene expression in airway fibroproliferation, we performed microarray analysis on total lung RNA from mice exposed to LPS both acutely and chronically. This analysis revealed a subset of genes typically associated with lung injury and repair, and ECM homeostasis. To further identify candidate genes specifically involved in generic fibroproliferation, we interrogated this analysis with genes induced in C57BL/6 mouse lung by bleomycin. This analysis yielded a list of 212 genes in common suggesting that there is a common subset of genes that regulate fibroproliferation in the lung independent of etiologic agent and site of injury.  相似文献   

12.
Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. However, the mechanism that activates infiltrating macrophages in the ischemic brain remains to be clarified. Here we demonstrate that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including interleukin-23 in macrophages through activation of Toll-like receptor 2 (TLR2) and TLR4, thereby promoting neural cell death, even though intracellular Prxs have been shown to be neuroprotective. The extracellular release of Prxs in the ischemic core occurred 12 h after stroke onset, and neutralization of extracellular Prxs with antibodies suppressed inflammatory cytokine expression and infarct volume growth. In contrast, high mobility group box 1 (HMGB1), a well-known damage-associated molecular pattern molecule, was released before Prx and had a limited role in post-ischemic macrophage activation. We thus propose that extracellular Prxs are previously unknown danger signals in the ischemic brain and that its blocking agents are potent neuroprotective tools.  相似文献   

13.
14.
A seco-triterpenoid, sentulic acid (SA) isolated from Sandoricum koetjape Merr attenuated nitric oxide (NO) production following co-stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in RAW264.7 macrophage cells. The mRNA expression levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), IFNγ, interleukin (IL)-6, and IL-12 in LPS/IFNγ co-stimulated RAW264.7 cells also decreased upon SA treatment. To determine the molecular mechanisms underlying the inhibitory effect of SA on LPS/IFNγ-induced NO production in RAW264.7 cells, we further analyzed Toll-like receptor (TLR) signaling by western blotting. The expression of TLR4 and IFN signaling molecules in cells treated with SA was significantly suppressed compared to that in cells not treated with SA. Additionally, SA inhibited the binding of LPS to the TLR4 receptor in RAW264.7 cells stimulated with Alexa Fluor 488-conjugated LPS. These results demonstrate that SA attenuates NO production after LPS/IFNγ co-stimulation in RAW264.7 cells by inhibiting the binding of LPS to TLR4. Our findings suggest that SA is beneficial for the treatment of inflammatory diseases.  相似文献   

15.
16.
BALB/c mice have been shown to easily induce Th2 type responses in several infection models. In this study, to examine the mechanisms of Th2 dominant responses in BALB/c mice, we assessed several macrophage functions using C3H/HeN, C57BL/6, and BALB/c mouse strains. Peritoneal macrophages from three strains of mice equally produced IL-12 by stimulation with LPS plus IFN-gamma. However, IFN-gamma production in response to IL-12 or IL-12 plus IL-18 was much lower in macrophages from BALB/c mice than other strains. IFN-gamma produced by activated macrophages induced IL-12R mRNA expression in T cells and macrophages themselves depending on their amount of IFN-gamma; namely, macrophages from BALB/c mice induced lower expression of IL-12R. Intracellular levels of STAT4 were much lower in macrophages from BALB/c mice. However, other STATs, such as STAT1 or STAT6, were expressed similarly in the three mouse strains. STAT4 and IFN-gamma production by other cell types such as T cells and B cells were equal in C3H/HeN and BALB/c mice. These results indicate that macrophages from Th2-dominant BALB/c mice have different functional characters compared with other mouse strains; that is, STAT4 expression and IFN-gamma production are reduced, which is one of the causes to shift to Th2-type responses.  相似文献   

17.
18.
Using two mouse strains with different abilities to generate interferon (IFN)-γ production after Mycobacterium tuberculosis infection, we tested the hypothesis that the frequency and activity of regulatory T (Treg) cells are influenced by genetic background. Our results demonstrated that the suppressive activity of spleen Treg cells from infected or uninfected BALB/c mice was enhanced, inhibiting IFN-γ and interleukin (IL)-2 production. Infected C57BL/6 mice exhibited a decrease in the frequency of lung Treg cells and an increased ratio CD4(+):CD4(+)Foxp3(+) cells compared with infected BALB/c mice and uninfected C57BL/6 mice. Moreover, infected C57BL/6 mice also had a decrease in the immunosuppressive capacity of spleen Treg cells, higher lung IFN-γ and IL-17 production, and restricted the infection better than BALB/c mice. Adoptive transfer of BALB/c Treg cells into BALB/c mice induced an increase in bacterial colony-forming unit (CFU) counts. Furthermore, BALB/c mice treated with anti-CD25 antibody exhibited lung CFU counts significantly lower than mice treated with irrelevant antibody. Our results show that in BALB/c mice, the Treg cells have a stronger influence than that in C57BL/6 mice. These data suggest that BALB/c and C57BL/6 mice may use some different mechanisms to control M. tuberculosis infection. Therefore, the role of Treg cells should be explored during the development of immune modulators, both from the perspective of the pathogen and the host.  相似文献   

19.
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes reducing toxic peroxides. Two distinct 2-Cys Prxs, Prx1 and Prx2, were identified in Vibrio vulnificus, a facultative aerobic pathogen. Both Prxs have two conserved catalytic cysteines, CP and CR, but Prx2 is more homologous in amino acid sequences to eukaryotic Prx than to Prx1. Prx2 utilized thioredoxin A as a reductant, whereas Prx1 required AhpF. Prx2 contained GGIG and FL motifs similar to the motifs conserved in sensitive Prxs and exhibited sensitivity to overoxidation. MS analysis and CP-SO3H specific immunoblotting demonstrated overoxidation of CP to CP-SO2H (or CP-SO3H) in vitro and in vivo, respectively. In contrast, Prx1 was robust and CP was not overoxidized. Discrete expression of the Prxs implied that Prx2 is induced by trace amounts of H2O2 and thereby residential in cells grown aerobically. In contrast, Prx1 was occasionally expressed only in cells exposed to high levels of H2O2. A mutagenesis study indicated that lack of Prx2 accumulated sufficient H2O2 to induce Prx1. Kinetic properties indicated that Prx2 effectively scavenges low levels of peroxides because of its high affinity to H2O2, whereas Prx1 quickly degrades higher levels of peroxides because of its high turnover rate and more efficient reactivation. This study revealed that the two Prxs are differentially optimized for detoxifying distinct ranges of H2O2, and proposed that Prx2 is a residential scavenger of peroxides endogenously generated, whereas Prx1 is an occasional scavenger of peroxides exogenously encountered. Furthermore, genome sequence database search predicted widespread coexistence of the two Prxs among bacteria.  相似文献   

20.
Bone marrow–derived monocytes/macrophages (BMMs) play a vital role in liver inflammation and fibrogenesis. Cannabinoid receptor 1 (CB1) mediates the recruitment of BMMs into the injured liver. In this study, we revealed the molecular mechanisms under CB1-mediated BMM infiltration. Carbon tetrachloride (CCl4) was employed to induce mouse liver injury. In vivo, human antigen R (HuR) was upregulated in macrophages of injured liver. HuR messenger RNA (mRNA) expression was positively correlated with CB1 and F4/80 mRNA expression. Furthermore, we detected the binding between HuR and CB1 mRNA in CCl4-treated livers. In vitro, HuR modulated arachidonyl-2′-chloroethylamide (ACEA, CB1 agonist)-induced BMM migration by regulating CB1 expression. HuR promoted CB1 expression via binding to CB1 mRNA. ACEA promoted the association between HuR and CB1 mRNA via inducing HuR nucleoplasmic transport. In the cytoplasm, HuR competed with the miR-29 family to improve CB1 expression and BMM migration. In conclusion, our results prove that HuR regulates CB1 expression and influences ACEA-induced BMM migration by competing with miR-29 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号