首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous study, we demonstrated that the anticancer synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) redox cycles at the mitochondrial enzyme dihydroorotate dehydrogenase to trigger anomalous reactive oxygen species (ROS) production and attendant apoptosis in transformed human epithelial cells. Furthermore, we speculated that the hydroxyl functional group of 4HPR was required for this pro-oxidant property. In this study, we investigated the role of the hydroxyl functional group in the in vitro cytotoxicity of 4HPR. Using 4HPR, its primary in vivo metabolite N-(4-methoxyphenyl)retinamide (4MPR), and the synthetic derivative N-(4-trifluoromethylphenyl)retinamide (4TPR), we examined the pro-oxidant and apoptotic effects, as well as the cellular uptake, of these three N-(4-substituted-phenyl)retinamides in premalignant and malignant human skin, prostate, and breast epithelial cells. Compared to 4HPR, both 4MPR and 4TPR were ineffective in promoting conspicuous cellular ROS production, mitochondrial disruption, or DNA fragmentation in these transformed cells. Interestingly, both 4MPR and 4TPR were not particularly cell permeative relative to 4HPR in skin or breast epithelial cells, which implied an additional role for the hydroxyl functional group in the cellular uptake of 4HPR. Moreover, the short-term uptake of 4HPR was directly proportional to cell size, but this characteristic, in obvious contrast to cellular bioenergetic status and/or dihydroorotate dehydrogenase expression, was not fundamentally influential in the overall sensitivity to the promotion of cellular ROS production and apoptosis induction by this agent. Together, these results strongly implicate the hydroxyl functional group in the cytotoxic effects of 4HPR.  相似文献   

2.
Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic signaling in transformed human prostate epithelial cells.  相似文献   

3.
4.
A2780 human ovarian carcinoma cells respond to treatment with the synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) with the production of dihydroceramide and with a concomitant reduction of cell proliferation and induction of apoptosis. The derived HPR-resistant clonal cell line, A2780/HPR, is less responsive to HPR in terms of dihydroceramide generation. In this report, we show that the production of sphingosine 1-phosphate (S1P) is significantly higher in A2780/HPR versus A2780 cells due to an increased sphingosine kinase (SK) activity and SK-1 mRNA and protein levels. Treatment of A2780 and A2780/HPR cells with a potent and highly selective pharmacological SK inhibitor effectively reduced S1P production and resulted in a marked reduction of cell proliferation. Moreover, A2780/HPR cells treated with a SK inhibitor were sensitized to the cytotoxic effect of HPR, due to an increased dihydroceramide production. On the other hand, the ectopic expression of SK-1 in A2780 cells was sufficient to induce HPR resistance in these cells. Challenge of A2780 and A2780/HPR cells with agonists and antagonists of S1P receptors had no effects on their sensitivity to the drug, suggesting that the role of SK in HPR resistance in these cells is not mediated by the S1P receptors.These data clearly demonstrate a role for SK in determining resistance to HPR in ovarian carcinoma cells, due to its effect in the regulation of intracellular ceramide/S1P ratio, which is critical in the control of cell death and proliferation.  相似文献   

5.
6.
Primary tubular epithelial cells develop spherical monolayered cysts when cultured in collagenI matrix, a model that has been used to study the mechanism of cystogenesis. In an attempt to block cystogenesis, we have evaluated the effect of N-(4-hydroxyphenyl) retinamide (HPR), a synthetic derivative of retinoic acid, on both formation and growth of cysts in a human model of polycystic kidney cells. Number, dimension and submicroscopical characteristics of cysts were evaluated after 2 and 4 weeks from treatment with HPR. A marked inhibitory effect of HPR on cystogenesis was found at concentration of 1 microM, while a complete block was observed at concentration between 5 and 10 microM. Furthermore, treatment with HPR of already formed cysts resulted in their disruption. HPR at 10 microM also induced apoptosis of several tubular epithelial cell models suggesting a correlation between the two phenomena. Taken together these observations demonstrate that HPR blocks cystogenesis by polycystic kidney cells "in vitro" and that it also reverts the fate of already formed cysts. Apoptosis may be the mechanism which mediates the inhibitory effect on cystogenesis in this model.  相似文献   

7.
N-(4-hydroxyphenyl)retinamide (4HPR) is a synthetic retinoid that has been tested in clinical trials as a cancer chemopreventive drug. 4HPR is cytotoxic to cancer cells but the underlying molecular mechanisms are at present only partially understood. Here we demonstrate that in the human cervical cancer cell line HeLa and the human leukemia cell line HL-60, 4HPR caused rapid, Reactive Oxygen Species (ROS)-dependent activation of the Unfolded Protein Response (UPR). In HeLa cells, 4HPR was shown to induce cell death and activation of procaspases. These effects of 4HPR could be abolished by the over-expression of dominant negative mutants of PERK or eIF2 alpha. HeLa cells incubated with 4HPR were found to form autophagosomes that were also mediated by the PERK/eIF2 alpha pathway. While 4HPR-induced cell death could be significantly prevented by the presence of specific caspase inhibitors, 3-methyladenine (3-MA) that inhibits autophagosome formation enhanced 4HPR-induced cell death. Examination of individual 4HPR-treated HeLa cells revealed that those without the development of autophagosomes hence exhibiting an incomplete UPR were caspase-active and were not viable, while those with autophagosomes were caspase-inactive and retained cell viability. Our data suggest that the PERK/eIF2 alpha pathway is essential for the cytotoxicity of 4HPR that targets on cancer cells with malfunctional UPR.  相似文献   

8.
9.
10.
Human cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1) was identified as a novel suppressor of Bcl-2-associated X protein (Bax)-mediated cell death using yeast-based functional screening of a mammalian cDNA library. The overexpression of COX6A1 significantly suppressed Bax- and N-(4-hydroxyphenyl)retinamide (4-HPR)-induced apoptosis in yeast and human glioblastoma-derived U373MG cells, respectively. The generation of reactive oxygen species (ROS) in response to Bax or 4-HPR was inhibited in yeast and U373MG cells that expressed COX6A1, indicating that COX6A1 exerts a protective effect against ROS-induced cell damage. 4-HPR-induced mitochondrial translocation of Bax, release of mitochondrial cytochrome c, and activation of caspase-3 were markedly attenuated in U373MG cells that stably expressed COX6A1. Our results demonstrate that yeast-based functional screening of human genes for inhibitors of Bax-sensitivity in yeast identified a protein that not only suppresses the toxicity of Bax in yeast, but also has a potential role in protecting mammalian cells from 4-HPR-induced apoptosis.  相似文献   

11.
The biochemical mechanisms of apoptosis-induction by all-trans-retinoic acid (atRA) and N-(4-hydroxyphenyl)retinamide (4HPR) in cultured MCF7 cancer cells were studied by multiparameter flow cytometry. Retinoid treatment induced formation of two biochemically distinct cell subpopulations, which preceded the appearance of cells with fragmented nuclei. Exposure to atRA led to a transient increase in NADH level and mitochondrial oxidative turnover and a slow decline in reduced thiol level and mitochondrial membrane potential, suggesting that atRA treatment induces a transient defense mechanism. The synthetic retinoid 4HPR, in contrast, caused a gradual decrease in mitochondrial oxidative turnover and cardiolipin level together with a small decline in mitochondrial membrane potential, suggesting that 4HPR induces oxidation of cardiolipin and subsequent leakage of the mitochondria. Co-incubation with cyclosporin A, an inhibitor of the mitochondrial permeability transition, did not prevent formation of fragmented nuclei or induction of changes in mitochondrial parameters by retinoids. Thus, the mitochondrial permeability transition does not appear to be involved in retinoid induction of apoptosis in MCF7 cells. Retinoid exposure of diploid human mammary epithelial cells induced mild oxidative stress but did not lead to formation of two cell subpopulations. We conclude that atRA and 4HPR induce apoptosis in MCF7 cells by two distinct and novel biochemical mechanisms.  相似文献   

12.
The majority of ovarian cancer cells are resistant to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Subtoxic concentrations of the semisynthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) enhanced TRAIL-mediated apoptosis in ovarian cancer cell lines but not in immortalized nontumorigenic ovarian epithelial cells. The enhancement of TRAIL-mediated apoptosis by 4HPR was not due to changes in the levels of proteins known to modulate TRAIL sensitivity. The combination of 4HPR and TRAIL enhanced cleavage of multiple caspases in the death receptor pathway (including the two initiator caspases, caspase-8 and caspase-9). The 4HPR and TRAIL combination leads to mitochondrial permeability transition, significant increase in cytochrome c release, and increased caspase-9 activation. Caspase-9 may further activate caspase-8, generating an amplification loop. Stable overexpression of Bcl-xL abrogates the interaction between 4HPR and TRAIL at the mitochondrial level by blocking cytochrome c release. As a consequence, a decrease in activation of caspase-9, caspase-8, and TRAIL-mediated apoptosis occurs. These results indicate that the enhancement in TRAIL-mediated apoptosis induced by 4HPR is due to the increase in activation of multiple caspases involving an amplification loop via the mitochondrial-death pathway. These findings offer a promising and novel strategy for the treatment of ovarian cancer.  相似文献   

13.
Retinoids serve as physiologic and pharmacologic mediators of proliferation, differentiation and apoptosis in normal and malignant cell types. All-trans-retinoic acid (tRA), a natural metabolite of vitamin A, induces differentiation and subsequent apoptosis in several types of malignant cells with immature phenotypes. Clinically, tRA has been approved for the treatment of patients with acute promyelocytic leukemia. Several synthetic retinoids induce apoptosis without differentiation in a variety of malignant epithelial cells in vitro. The synthetic derivative, N-(4-hydroxyphenyl)retinamide (HPR), shows significant promise as a chemo-preventive and therapeutic anti-cancer agent in light of its minimal toxicity and broad activity in experimental cancer models representing common human malignancies. This paper reviews the role of retinoids as mediators of differentiation and apoptosis in malignant cells, and the impact this activity could have on clinical oncology.  相似文献   

14.
The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) is being examined in both chemoprevention and therapy clinical trials. Yet, its mechanism(s) of action is still not fully elucidated. In previous studies, an increase in mitochondrial reactive oxygen species has been proposed as one mechanism through which 4HPR could exert its proapoptotic effects. This study explored whether mitochondrial respiration is required for 4HPR action using human cutaneous squamous cell carcinoma cells and respiration-deficient clones. In parental cells, 4HPR rapidly promoted hydroperoxide production followed by mitochondrial permeability transition, caspase activity, and DNA fragmentation. Short term exposure to 4HPR also inhibited oxygen consumption in parental cells. This activity was reversed by the antioxidant vitamin C indicating the prooxidant effect of 4HPR directly impaired mitochondrial function. In respiration-deficient clones, the proapoptotic qualities of 4HPR were conspicuously diminished illustrating a central role for mitochondrial respiration in 4HPR-induced cell death. In parental cells, various mitochondrial inhibitors were examined to determine potential sites associated with the prooxidant activity of 4HPR. Inhibitors of Complex II as well as center i inhibitors of Complex III enhanced 4HPR-induced hydroperoxide production. Complex I inhibitors, center o inhibitors of Complex III, cyanide, oligomycin A, and coenzyme Q analogues decreased 4HPR-induced hydroperoxide production. The coenzyme Q analogues were very effective in this respect, and they also blocked the enhanced hydroperoxide production obtained when center i inhibitors were combined with 4HPR. These results suggest the prooxidant property of 4HPR is associated with redox metabolism via an enzymatic process occurring at a quinone-binding site in Complex I and/or center o of Complex III.  相似文献   

15.
Infectious salmon anaemia (ISA) is an important, systemic viral disease of farmed Atlantic salmon, Salmo salar L. Endothelial cells are the main target cells for highly virulent HPR-deleted ISA virus (ISAV) types. Here we examine the pathogenesis of non-virulent ISAV HPR0 infections, presenting evidence of an epithelial tropism for this virus type, including actual infection and replication in the epithelial cells. Whereas all HPR0 RT-qPCR positive gills prepared for cryosection tested positive by immunohistochemistry (IHC) and immunofluorescent labelling, only 21% of HPR0 RT-qPCR positive formalin-fixed paraffin-embedded gills were IHC positive, suggesting different methodological sensitivities. Only specific epithelial cell staining was observed and no staining was observed in endothelial cells of positive gills. Furthermore, using an ISAV segment 7 RT-PCR assay, we demonstrated splicing of HPR0, suggesting initial activation of the replication machinery in the epithelial gill cells. Immunological responses were investigated by the expression of interferon-related genes (e.g. Mx and γIP) and by ELISA for presence of anti-ISAV antibodies on samples taken sequentially over several months during an episode of transient HPR0 infection. All fish revealed a variable, but increased expression of the immunological markers in comparison to normal healthy fish. Taken together, we conclude that HPR0 causes a localized epithelial infection of Atlantic salmon.  相似文献   

16.
17.
Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.  相似文献   

18.
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells.  相似文献   

19.
In the present work, we studied the effects of fenretinide (N-(4-hydroxyphenyl)retinamide (HPR)), a hydroxyphenyl derivative of all-trans-retinoic acid, on sphingolipid metabolism and expression in human ovarian carcinoma A2780 cells. A2780 cells, which are sensitive to a pharmacologically achievable HPR concentration, become 10-fold more resistant after exposure to increasing HPR concentrations. Our results showed that HPR was able to induce a dose- and time-dependent increase in cellular ceramide levels in sensitive but not in resistant cells. This form of resistance in A2780 cells was not accompanied by the overexpression of multidrug resistance-specific proteins MDR1 P-glycoprotein and multidrug resistance-associated protein, whose mRNA levels did not differ in sensitive and resistant A2780 cells. HPR-resistant cells were characterized by an overall altered sphingolipid metabolism. The overall content in glycosphingolipids was similar in both cell types, but the expression of specific glycosphingolipids was different. Specifically, our findings indicated that glucosylceramide levels were similar in sensitive and resistant cells, but resistant cells were characterized by a 6-fold lower expression of lactosylceramide levels and by a 6-fold higher expression of ganglioside levels than sensitive cells. The main gangliosides from resistant A2780 cells were identified as GM3 and GM2. The possible metabolic mechanisms leading to this difference were investigated. Interestingly, the mRNA levels of glucosylceramide and lactosylceramide synthases were similar in sensitive and resistant cells, whereas GM3 synthase mRNA level and GM3 synthase activity were remarkably higher in resistant cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号