首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The plasmalemma vesicles isolated from cucumber and maize roots were used to study the effect of Cu2+ and Cd2+ on the hydrolytic and proton pumping activities of ATPase. In vivo application of metal ions to the plant growth solutions resulted in stimulation of the proton transport in maize. In cucumber roots the action of metals was not the same: cadmium stimulated the H+ transport through plasmalemma whereas Cu2+ almost completely inhibited it. Copper ions decreased the hydrolytic activity of H+-ATPase in cucumber, without any effect on this activity in membranes isolated from maize roots. The effect of cadmium on the hydrolytic activities was opposite: ATP-hydrolysis activity in plasmalemma was not altered in cucumber, whereas in maize its stimulation was observed. The amount of accumulated metals was not the main reason of different influence of metals on H+-ATPase activity in tested plants. In in vitro experiments Cu2+ inhibited H+ transport in the cucumber, to a higher degree than Cd2+ and both metals did not change this H+-ATPase activity of plasmalemma isolated from corn roots. Cu2+ added into the incubation medium reduced the hydrolytic activity of ATPase in the plasma membrane isolated from cucumber as well as from corn roots. Cd2+ diminished the hydrolytic activity of ATPase in cucumber, and no effect of Cd2+ in the plasmalemma isolated from corn roots was found. Our results indicated different in vitro and in vivo action of both metals on H+-ATPase and different response of this enzyme to Cu2+ and Cd2+ in maize and cucumber.  相似文献   

2.
Brauer D  Hsu AF  Tu SI 《Plant physiology》1988,87(3):598-602
Proton transport catalyzed by the nitrate-insensitive, vanadate-sensitive H+-ATPase in microsomes from maize (Zea mays L.) roots washed with 0.25 molar KI decreased as a function of time at 0 to 4°C. The rate of proton transport was approximately one-half of that by freshly isolated microsomes after 6 to 18 hours of cold storage. The decrease in proton transport coincided with losses in membrane phosphatidylcholine and was not associated with a change in vanadate-sensitive ATP hydrolysis. A technique based on a protocol developed for the reconstitution of Neurospora crassa plasma membrane H+-ATPase (DS Perlin, K Kasamo, RJ Brooker, CW Slayman 1984 J Biol Chem 259: 7884-7892) was employed to restore proton transport activity to maize microsomes. These results indicated that the decline in proton transport by maize root membranes during cold storage was not due to degradation of the protein moiety of the H+-ATPase, but was due to the loss of phospholipids.  相似文献   

3.
ATPase activity, ATP-dependent H+ transport and the amount of antigenic tomato plasma membrane H+-APTase have been analysed in membrane vesicles isolated from Glomus mosseae- or Glomus intraradices-colonized roots and from non-mycorrhizal tomato roots. Microsomal protein content was higher in mycorrhizal than in control roots. The specific activity of the plasma membrane H+-ATPase was not affected by mycorrhizal colonization, although this activity increased in membranes isolated from mycorrhizal roots when expressed on a fresh weight basis. Western blot analysis of microsomal proteins using antibodies raised against the Arabidopsis thaliana plasma membrane H+ - ATPase showed that mycorrhizal colonization did not change the relative amount of tomato plasma membrane ATPase in the microsomes. However, on a fresh weight basis, there was a greater amount of this protein in roots of mycorrhizal plants. In addition, mycorrhizal membranes showed a higher specific activity of the vanadate-sensitive ATP-dependant H+ transport than membranes isolated from control roots. These results suggest that mycorrhiza might regulate the plasma membrane ATPase by increasing the coupling efficiency between H+ transport and ATP hydrolysis. The observed effects of mycorrhizal colonization on plasma membrane H+-ATPase were independent of the AM fungal species colonizing the root system.  相似文献   

4.
Legume nodules have specialized transport functions for the exchange of carbon and nitrogen compounds between bacteroids and root cells. Plasma membrane-type (vanadate-sensitive) H+-ATPase energizes secondary active transporters in plant cells and it could drive exchanges across peribacteroidal and plasmatic membranes. A nodule cDNA corresponding to a major isoform of Phaseolus vulgaris H+-ATPase (designated BHA1) has been cloned. BHA1 is a functional proton pump because after removal of its inhibitory domain and can complement a yeast mutant unable to synthesize a H+-ATPase. BHA1 is not nodule-specific, since it is also expressed in roots of uninfected plants. It belongs to the subfamily of plasma membrane H+-ATPases defined by the Arabidopsis AHA1, AHA2 and AHA3 genes and the tobacco PMA4 and corn MHA2 genes. In situ hybridization in nodule sections indicates high expression of BHA1 limited to uninfected cells. These results were confirmed by immunocytochemistry. The relatively low expression of plasma membrane-type H+-ATPase in Rhizobium-infected cells put a note of caution on the origin of the vanadate-sensitive ATPase described in preparations of peribacteroidal membranes. Also, our results indicate that active transport in symbiotic nodules is most intense at the plasma membrane of uninfected cells and support a specialized role of uninfected tissue for nitrogen transport.  相似文献   

5.
The short-term effects of coumarin on three different maize primary root zones, transition zone (TZ, 3 mm) and two non-growing zones (NGZ1 and NGZ2 at 20 and 50 mm, respectively), were studied in order to investigate the effect of the allelochemical on maize root elongation rate (RER). The RER, plasma membrane (pm) H+-ATPase activity, quantitative pH changes and cell membrane potentials were evaluated. The results showed that coumarin caused at the TZ (1) an increased RER; (2) an enhancement of pm H+-ATPase activity and proton extrusion; and (3) a transient depolarization followed by a hyperpolarization of cell membrane potential. These observations were not evident in the NGZ1 and NGZ2 of the maize root. Coumarin-treatment in the NGZ1 did not change RER, but caused a membrane depolarization, while the NGZ2 was mostly insensitive to the allelochemical. These data suggested that the primary maize root was sensitive to coumarin within a 20 mm section from the root tip, but the more distal NGZ2 was not involved in coumarin-elicited physiological responses.Key words: coumarin, membrane potential, pmH+-ATPase, proton efflux, root elongation rate  相似文献   

6.
Brauer D  Tu SI 《Plant physiology》1991,95(3):707-710
Certain carboxylic acid groups within the primary structure of proton translocating proteins are thought to be involved in the proton pathway. In this report, the effects of a lipophilic carboxylic acid reactive reagent, N-cyclo-N′(4-dimethylamino-α-naphthyl)carbodiimide (NCD-4), on the two types of proton pumps in maize (Zea mays L.) root microsomes were investigated. NCD-4 was found to inhibit the vacuolar-type H+-ATPase in microsomal preparations; however, the plasma membrane-type H+-ATPase was unaffected. The H+-ATPase in highly purified tonoplast vesicles was also inhibited by NCD-4. Inhibition was dependent on the concentration and length of exposure to the reagent. However, there was little, if any, increase in the fluorescence of treated vesicles, indicating few carboxylic acid residues were reacting. Inhibition of the tonoplast H+-ATPase by NCD-4 was examined further with a partially purified preparation. The partially purified H+-ATPase also showed sensitivity to the NCD-4, supporting the hypothesis that this carboxylic acid reagent is an inhibitor of the tonoplast ATPase from maize roots.  相似文献   

7.
8.
Leishmania donovani has an active K+/H+ exchange system on the surface membrane. Modulation of external K+ concentration resulted in a corresponding change in internal pH (pHi) suggesting a link between proton and potassium transport. Although a Na+/H+ antiporter is present on the plasma membrane, its sensitivity to amiloride suggests that it operates independent of K+/H+ exchange. Reduction of cellular ATP with NaN3 and KCN inhibits K+/H+ exchange showing thereby that the process is energy dependent. The K+/H+ exchange is sensitive to inhibitors of the gastric K+/H+-ATPase. It is concluded that the H+-ATPase previously reported on the plasma membrane of L. donovani is in fact a K+/H+-ATPase. © 1994 wiley-Liss, Inc.  相似文献   

9.
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase.  相似文献   

10.
The immunocytochemical localization of the plasma membrane H+‐ATPase in epidermal cells of tomato roots was studied using a monoclonal antibody raised against purified maize P‐type H+‐ATPase. Plants subjected to iron starvation exhibited increased proton extrusion that was confined to the root elongation zones. Immunogold labelling of the H+‐ATPase on the plasma membrane was considerably higher in rhizodermal cells within zones with intense proton extrusion than in non‐acidifying areas of the roots. Transfer cells were formed in rhizodermal cells of Fe‐deficient plants. Quantitative determination of immunolabelling revealed that the density of PM H+‐ATPase in transfer cells was about twice that of ordinary epidermal cells. In transfer cells, H+‐ATPase was most abundant on the plasma membrane lining the labyrinthine invaginations of the peripheral cell wall. While the number of immunologically detectable ATPase molecules in transfer cells was not spatially correlated with proton extrusion activity, the frequency of transfer cells was considerably higher in acidifying root areas relative to non‐active segments. Split‐root experiments indicated that both the steady‐state level of plasma membrane H+‐ATPase and proton extrusion activity are systemically regulated, indicating inter‐organ regulation of rhizosphere acidification. Exogenous application of the auxin analog 2,4‐dichlorophenoxyacetic acid and the ethylene precursor 1‐aminocyclopropane‐1‐carboxlic acid caused the formation of transfer cells at a frequency similar to that observed in Fe‐deficient roots. However, the number of proton pumps was not affected by the hormone treatment, suggesting that both responses are regulated independently. It is concluded that transfer cells in the rhizodermis may be important but not crucial for rhizosphere acidification.  相似文献   

11.
Pea root elongation was strongly inhibited in the presence of a low concentration of Al (5 μM). In Al-treated root, the epidermis was markedly injured and characterized by an irregular layer of cells of the root surface. Approximately 30% of total absorbed Al accumulated in the root tip and Al therein was found to cause the inhibition of whole root elongation. Increasing concentrations of Ca2+ effectively ameliorated the inhibition of root elongation by Al and 1 mM of CaCl2 completely repressed the inhibition of root elongation by 50 μM Al. The ameliorating effect of Ca2+ was due to the reduction of Al uptake. H+-ATPase and H+-PPase activity as well as ATP and PPidependent H+ transport activity of vacuolar membrane vesicles prepared from barley roots increased to a similar extent by the treatment with 50 μM AlCl3. The rate of increase of the amount of H+-ATPase and H+-PPase was proportional to that of protein content measured by immunoblot analysis with antibodies against the catalytic subunit of the vacuolar H+-ATPase and H+-PPase of mung bean. The increase of both activities was discussed in relation to the physiological tolerance mechanism of barley root against Al stress.  相似文献   

12.
Phosphorylation/dephosphorylation of the plasma-membrane H+-ATPase (EC 3.6.1.35) could act as a regulatory mechanism to control its activity. In this work, a plasmalemma-enriched fraction from maize roots and a partially purified H+-ATPase were used to investigate the effects of Ca2+ and calmodulin on the H+-ATPase activity and on its phosphorylation status. Both the hydrolytic and the proton-pumping activities were reduced approximately 50% by micromolar Ca2+ concentrations while calmodulin did not show any effect either alone or in the presence of Ca2+. The lack of effect of calmodulin antagonists indicated that calmodulin was not involved in this response. The addition of staurosporine, a kinase inhibitor, abolished the inhibitory effect of Ca2+. Phosphorylation of plasma membrane and partially purified H+-ATPase showed the same behavior. In the presence of Ca2+ a polypeptide of 100 kDa was phosphorylated. This polypeptide cross-reacted with antibodies raised against the H+-ATPase of maize roots. The autoradiogram of the immunodetected protein clearly showed that this polypeptide, which corresponds to the H+-ATPase, was phosphorylated. Additional clear evidence comes from the immunoprecipitation experiments: the data obtained show that the H+-ATPase activity is indeed influenced by its state of phosphorylation. Received: 19 October 1998 / Accepted: 23 February 1999  相似文献   

13.
Effects of phosphatidic acid (PA), a product of phospholipase D activity, on Ca2+ and H+ transport were investigated in membrane vesicles obtained from roots and coleoptiles of maize (Zea mays L.). Calcium flows were measured with fluorescent probes indo-1 and chlorotetracycline loaded into the vesicles and added to the incubation medium, respectively. Phosphatidic acid (50–500 μM) was found to induce downhill flow of Ca2+ along the concentration gradient into the plasma membrane vesicles and endomembrane vesicles (tonoplast and endoplasmic reticulum). Protonophorous functions of PA were probed with acridine orange. First, the ionic H+ gradient was created on the tonoplast vesicles by means of H+-ATPase activation with Mg-ATP addition. Then, the vesicles were treated with 25–100 μM PA, which induced the release of protons from tonoplast vesicles and dissipation of the proton gradient. Thus, PA could function as an ionophore and was able to transfer Ca2+ and H+ across plant cell membranes along concentration gradients of these ions. The role of PA in mechanisms of intracellular signaling in plants is discussed.  相似文献   

14.
The presence of dicyclohexylcarbodiimide (DCCD) inhibited the activities of vanadate-sensitive H+ -ATPase in both native and reconstituted plasma membrane of maize (Zea mays L. cv. WF9 × Mo 17) roots. Concentration dependence of DCCD inhibition on adenosine triphosphate (ATP) hydrolysis of native plasma membrane vesicles suggested that the molar ratio of effective DCCD binding to ATPase was close to 1. The DCCD inhibition of ATP hydrolysis could be slightly reduced by the addition of ATP, Mg:ATP, adenosine monophosphate (AMP), Mg:AMP and adenosine diphosphate (ADP). More hydrophilic derivatives of DCCD such as l-ethyl-N?-3-trimethyl ammonium carbodiimide (EDAC) or 1-ethyl-3-3-dimethyl-aminopropyl carbodiimide (EDC) gave no inhibition, indicating that the effective DCCD binding site was located in a hydrophobic region of the protein. The proton transport activity of reconstituted plasma membrane at a temperature below 20°C or above 25°C was much sensitive to DCCD treatment. Build-up of the proton gradient was analyzed according to a kinetic model, which showed that proton leakage across de-energized reconstituted plasma membranes was not affected by DCCD, but was sensitive to the method employed to quench ATP hydrolysis. Reconstituted plasma membrane vesicles treated with DCCD exhibited a differential inhibition of the coupled H+-transport and ATP hydrolysis. The presence of 50 μM DCCD nearly abolished transport but inhibited less than 50% of ATP hydrolysis. The above results suggest that the link between proton transport and vanadate-sensitive ATP hydrolysis is indirect in nature.  相似文献   

15.
The vacuolar membrane of plant cells is characterized by two proton pumps: the vacuolar H+-ATPase (V-ATPase; EC 3.6.1.3) and the vacuolar H+-PPase (V-PPase; EC 3.6.1.1). Recently, Du Pont and Morrissey reported that Ca2+ stimulates hydrolytic activity of purified V-ATPase (Arch. Biochim. Biophys., 1992. 294: 341–346). Since this effect may be due to degradation during purification further investigation of Ca2+ regulation of native V-ATPase was done. However, native tonoplast membranes contain a Ca2+/H+ antiport activity, which interferes with effects of calcium ions on proton transport activity of vacuolar ATPase. Therefore, the effects of anti-calmodulin drugs (W-7, W-5, calmidazolium), and calcium channel antagonists (Verapamil, Diltiazem) on proton transport activities of the vacuolar-type H+-ATPase and H+-PPase in tonoplast enriched membrane vesicle preparations from roots of Zea mays L. were studied. The concentrations for half maximal inhibition of vacuolar H+-ATPase (H+-PPase) were: 71 (191) μM W-7, 470 (> 800) μM W-5, 26 (24) μM calmidazolium (= compound R 24571). 398 (700) μM Verapamil, and 500 (1 330) μM Diltiazem. Estimation of Hill coefficients (nH) for the inhibition by Verapamil showed a further difference between the two vacuolar proton pumps (H+-ATPase, nH= 2.02; H+-PPase, nn= 0.96). The data indicate that the vacuolar H+-ATPase itself is affected by these chemicals. It is suggested that some biological activities of W-7, W-5, Verapamil, and Diltiazem are due to their effects on proton translocation by the vacuolar-type H+-ATPase.  相似文献   

16.
The electrical response of nitrate-grown maize (Zea mays L.) roots to 0.1 millimolar nitrate was comprised of two sequential parts: a rapid and transient depolarization of the membrane potential, followed by a slower, net hyperpolarization to a value more negative than the original resting potential. The magnitude of the response was smaller in roots of seedlings grown in the absence of nitrate, but, within 3 hours of initial exposure to 0.1 millimolar nitrate, increased to that of nitrate-grown roots. Chloride elicited a separate electrical response with a pattern similar to that of the nitrate response. However, the results presented in this study strongly indicate that the electrical response to nitrate reflects the activity of a nitrate-inducible membrane transport system for nitrate which is distinct from that for chloride. Inhibitors of the plasmalemma H+-ATPase (vanadate, diethylstilbestrol) completely inhibited both parts of the electrical response to nitrate, as did alkaline external pH. The magnitude of the initial nitrate-dependent, membrane potential depolarization was independent of nitrate concentration, but the subsequent nitrate-dependent hyperpolarization showed saturable dependence with an apparent Km of 0.05 millimolar. These results support a model for nitrate uptake in maize roots which includes a depolarizing NO3/H+ symport. The model proposes that the nitrate-dependent membrane potential hyperpolarization is due to the plasma membrane proton pump, which is secondarily stimulated by the operation of the NO3/H+ symport.  相似文献   

17.
Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange.  相似文献   

18.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

19.
20.
The effect of a water extractable humic substances fraction (WEHS) on nitrate uptake and plasma membrane (pm) H+-ATPase activity of maize roots was investigated. Four days old maize root seedlings were exposed for 4 to 24 h to a nutrient solution containing 200 μ M nitrate in the absence or presence of 5 mg org. C { L -1 WEHS. Plants exposed to nitrate developed a higher capacity to absorb the anion (induction): the net uptake rate progressively increased up to 12 h of contact with the solution; thereafter, a decline was observed. When WEHS was present together with nitrate in the nutrient solution, the induction of nitrate uptake was evident and maximal already 4 h after starting the treatment. The rate of net nitrate uptake decreased only slightly during the remaining period (4-24 h). Stimulation of net nitrate uptake rate was also observed when WEHS was added to a nitrogen- or nitrate-free nutrient solution or to a 5 mM CaSO4 solution. The activity of pmH+-ATPase raised upon exposure of the roots to nitrate with the same pattern observed for nitrate uptake. The contemporary presence of nitrate and WEHS caused a further stimulation of the pmH+-ATPase activity after 4 h treatment. An increase in the enzyme activity was also observed when plants were treated for 4 h in the presence of WEHS in CaSO4, nitrogen- or nitrate-free solutions. However, when nitrate was present the enhancement was even greater. Results support the idea that the plasma membrane proton pump might be one of the primary targets of the action of humic substances on plant nutrient acquisition. A role of WEHS in the modulation of nitrate uptake via an interaction with the pm H+-ATPase is also discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号