首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.  相似文献   

3.
With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Moreover, existing correlation-based algorithms can only measure the relationship between genes within a single dataset or two multi-modal datasets from the same samples. It is still unclear how to quantify the strength of association of the same gene across two biological datasets with different samples. To this end, we propose Approximate Distance Correlation (ADC) to select interrelated genes with statistical significance across two different biological datasets. ADC first obtains the k most correlated genes for each target gene as its approximate observations, and then calculates the distance correlation (DC) for the target gene across two datasets. ADC repeats this process for all genes and then performs the Benjamini-Hochberg adjustment to control the false discovery rate. We demonstrate the effectiveness of ADC with simulation data and four real applications to select highly interrelated genes across two datasets. These four applications including 21 cancer RNA-seq datasets of different tissues; six single-cell RNA-seq (scRNA-seq) datasets of mouse hematopoietic cells across six different cell types along the hematopoietic cell lineage; five scRNA-seq datasets of pancreatic islet cells across five different technologies; coupled single-cell ATAC-seq (scATAC-seq) and scRNA-seq data of peripheral blood mononuclear cells (PBMC). Extensive results demonstrate that ADC is a powerful tool to uncover interrelated genes with strong biological implications and is scalable to large-scale datasets. Moreover, the number of such genes can serve as a metric to measure the similarity between two datasets, which could characterize the relative difference of diverse cell types and technologies.  相似文献   

4.
5.
Accurate identification of cell types from single-cell RNA sequencing(scRNA-seq) data plays a critical role in a variety of scRNA-seq analysis studies. This task corresponds to solving an unsupervised clustering problem, in which the similarity measurement between cells affects the result significantly. Although many approaches for cell type identification have been proposed,the accuracy still needs to be improved. In this study, we proposed a novel single-cell clustering framework based on similarity learning, called SSRE. SSRE models the relationships between cells based on subspace assumption, and generates a sparse representation of the cell-to-cell similarity.The sparse representation retains the most similar neighbors for each cell. Besides, three classical pairwise similarities are incorporated with a gene selection and enhancement strategy to further improve the effectiveness of SSRE. Tested on ten real scRNA-seq datasets and five simulated datasets, SSRE achieved the superior performance in most cases compared to several state-of-the-art single-cell clustering methods. In addition, SSRE can be extended to visualization of scRNA-seq data and identification of differentially expressed genes. The matlab and python implementations of SSRE are available at https://github.com/CSUBioGroup/SSRE.  相似文献   

6.
7.
8.
9.
10.
Transposons are genomic parasites, and their new insertions can cause instability and spur the evolution of their host genomes. Rapid accumulation of short-read whole-genome sequencing data provides a great opportunity for studying new transposon insertions and their impacts on the host genome. Although many algorithms are available for detecting transposon insertions, the task remains challenging and existing tools are not designed for identifying de novo insertions. Here, we present a new benchmark fly dataset based on PacBio long-read sequencing and a new method TEMP2 for detecting germline insertions and measuring de novo ‘singleton’ insertion frequencies in eukaryotic genomes. TEMP2 achieves high sensitivity and precision for detecting germline insertions when compared with existing tools using both simulated data in fly and experimental data in fly and human. Furthermore, TEMP2 can accurately assess the frequencies of de novo transposon insertions even with high levels of chimeric reads in simulated datasets; such chimeric reads often occur during the construction of short-read sequencing libraries. By applying TEMP2 to published data on hybrid dysgenic flies inflicted by de-repressed P-elements, we confirmed the continuous new insertions of P-elements in dysgenic offspring before they regain piRNAs for P-element repression. TEMP2 is freely available at Github: https://github.com/weng-lab/TEMP2.  相似文献   

11.
12.
Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer. Packages implementing AQuN are provided for Python and Matlab: https://github.com/YakhiniGroup/PyAQN.  相似文献   

13.
In the past few years, a wealth of sample-specific network construction methods and structural network control methods has been proposed to identify sample-specific driver nodes for supporting the Sample-Specific network Control (SSC) analysis of biological networked systems. However, there is no comprehensive evaluation for these state-of-the-art methods. Here, we conducted a performance assessment for 16 SSC analysis workflows by using the combination of 4 sample-specific network reconstruction methods and 4 representative structural control methods. This study includes simulation evaluation of representative biological networks, personalized driver genes prioritization on multiple cancer bulk expression datasets with matched patient samples from TCGA, and cell marker genes and key time point identification related to cell differentiation on single-cell RNA-seq datasets. By widely comparing analysis of existing SSC analysis workflows, we provided the following recommendations and banchmarking workflows. (i) The performance of a network control method is strongly dependent on the up-stream sample-specific network method, and Cell-Specific Network construction (CSN) method and Single-Sample Network (SSN) method are the preferred sample-specific network construction methods. (ii) After constructing the sample-specific networks, the undirected network-based control methods are more effective than the directed network-based control methods. In addition, these data and evaluation pipeline are freely available on https://github.com/WilfongGuo/Benchmark_control.  相似文献   

14.
Understanding the relationships between biological processes is paramount to unravel pathophysiological mechanisms. These relationships can be modeled with Transfer Functions (TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we present Iliski, a software dedicated to TFs computation between two signals. It includes different pre-treatment routines and TF computation processes: deconvolution, deterministic and non-deterministic optimization algorithms that are adapted to disparate datasets. We apply Iliski to data on neurovascular coupling, an ensemble of cellular mechanisms that link neuronal activity to local changes of blood flow, highlighting the software benefits and caveats in the computation and evaluation of TFs. We also propose a workflow that will help users to choose the best computation according to the dataset. Iliski is available under the open-source license CC BY 4.0 on GitHub (https://github.com/alike-aydin/Iliski) and can be used on the most common operating systems, either within the MATLAB environment, or as a standalone application.  相似文献   

15.
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.  相似文献   

16.
G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).  相似文献   

17.
The recently developed Hi-C technique has been widely applied to map genome-wide chromatin interactions. However, current methods for analyzing diploid Hi-C data cannot fully distinguish between homologous chromosomes. Consequently, the existing diploid Hi-C analyses are based on sparse and inaccurate allele-specific contact matrices, which might lead to incorrect modeling of diploid genome architecture. Here we present ASHIC, a hierarchical Bayesian framework to model allele-specific chromatin organizations in diploid genomes. We developed two models under the Bayesian framework: the Poisson-multinomial (ASHIC-PM) model and the zero-inflated Poisson-multinomial (ASHIC-ZIPM) model. The proposed ASHIC methods impute allele-specific contact maps from diploid Hi-C data and simultaneously infer allelic 3D structures. Through simulation studies, we demonstrated that ASHIC methods outperformed existing approaches, especially under low coverage and low SNP density conditions. Additionally, in the analyses of diploid Hi-C datasets in mouse and human, our ASHIC-ZIPM method produced fine-resolution diploid chromatin maps and 3D structures and provided insights into the allelic chromatin organizations and functions. To summarize, our work provides a statistically rigorous framework for investigating fine-scale allele-specific chromatin conformations. The ASHIC software is publicly available at https://github.com/wmalab/ASHIC.  相似文献   

18.
The advent of single-cell sequencing is providing unprecedented opportunities to disentangle tissue complexity and investigate cell identities and functions. However, the analysis of single cell data is a challenging, multi-step process that requires both advanced computational skills and biological sensibility. When dealing with single cell RNA-seq (scRNA-seq) data, the presence of technical artifacts, noise, and biological biases imposes to first identify, and eventually remove, unreliable signals from low-quality cells and unwanted sources of variation that might affect the efficacy of subsequent downstream modules. Pre-processing and quality control (QC) of scRNA-seq data is a laborious process consisting in the manual combination of different computational strategies to quantify QC-metrics and define optimal sets of pre-processing parameters.Here we present popsicleR, a R package to interactively guide skilled and unskilled command line-users in the pre-processing and QC analysis of scRNA-seq data. The package integrates, into several main wrapper functions, methods derived from widely used pipelines for the estimation of quality-control metrics, filtering of low-quality cells, data normalization, removal of technical and biological biases, and for cell clustering and annotation. popsicleR starts from either the output files of the Cell Ranger pipeline from 10X Genomics or from a feature-barcode matrix of raw counts generated from any scRNA-seq technology. Open-source code, installation instructions, and a case study tutorial are freely available at https://github.com/bicciatolab/popsicleR.  相似文献   

19.
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.
This is a PLOS Computational Biology Software paper.
  相似文献   

20.
TnSeq has become a popular technique for determining the essentiality of genomic regions in bacterial organisms. Several methods have been developed to analyze the wealth of data that has been obtained through TnSeq experiments. We developed a tool for analyzing Himar1 TnSeq data called TRANSIT. TRANSIT provides a graphical interface to three different statistical methods for analyzing TnSeq data. These methods cover a variety of approaches capable of identifying essential genes in individual datasets as well as comparative analysis between conditions. We demonstrate the utility of this software by analyzing TnSeq datasets of M. tuberculosis grown on glycerol and cholesterol. We show that TRANSIT can be used to discover genes which have been previously implicated for growth on these carbon sources. TRANSIT is written in Python, and thus can be run on Windows, OSX and Linux platforms. The source code is distributed under the GNU GPL v3 license and can be obtained from the following GitHub repository: https://github.com/mad-lab/transit
This is a PLOS Computational Biology Software paper
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号