首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We studied the temporal generation of reactive oxygen species (ROS) in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation using WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400 nm cut-off filters to find out the minimum exposure time and most effective region of the solar spectrum inducing highest level of ROS. There was no significant generation of ROS in all treatments in comparison to the samples kept in the dark during the first 8 h of exposure; however, after 12 h of exposure, ROS were significantly generated in samples covered with 305, 295, or 280 nm cut-off filters. In contrast with ROS, the fragmentation of filaments was predominantly seen in 280 nm cut-off filter covered samples after 12 h of exposure. After 24 h of exposure, ROS levels were significantly higher in all samples than in the dark; however, the ROS signals were more pronounced in 320, 305, 295, or 280 nm cut-off filter covered samples. In contrast, the length of filaments was reduced in 305, 295, or 280 nm cut-off filter covered samples after 24 h of exposure. Thus, fragmentation of the filament was induced by all wavelengths of the UV-B region contrary to the UV-A region where only shorter wavelengths were able to induce the fragmentation. In contrast, ROS were generated by all wavelengths of the solar spectrum after 24 h of exposure; however, shorter wavelengths of both the UV-A and the UV-B regions were more effective in generating ROS in comparison to their higher wavelengths and photosynthetic active radiation (PAR). Moreover, lower wavelengths of UV-B were more efficient than the lower wavelengths of the UV-A radiation. Findings from this study suggest that certain threshold levels of ROS are required to induce the fragmentation of filaments.  相似文献   

2.
Inhibition of photosynthetic activity by UV-B radiation in radish seedlings   总被引:1,自引:0,他引:1  
Inhibition of primary photosynthetic reactions by UV-B radiation (280 nm-320 nm) was demonstrated in radish leaves ( Raphanus sativus cv. Saxa Treib). Detached radish cotyledons from 10-day-old seedlings were irradiated with continuous white light and increasing UV-B irradiances using cut-off filters with increasing transmission for shorter wavelengths (WG 360, WG 345, WG 320, WG 305, WG 295, WG 280). Photosynthetic activity measured in terms of chlorophyll fluorescence induction (Kautsky effect) after 2, 4, 6, 8 and 24 h irradiation decreased in a wavelength dependent way with increasing UV-B irradiance and irradiation time.
Radish seedlings grown for 10 days from the time of germination under the same UV-B irradiation conditions exhibited similar reductions of the variable fluorescence as detached cotyledons irradiated for short time periods. They additionally had lower initial fluorescence at high UV-B radiation levels, although the chlorophyll content per leaf area increased. In contrast to short term experiments, the plastoquinone and flavonoid content increased with increasing UV-B irradiance when based on leaf area.  相似文献   

3.
In vivo chlorophyll fluorescence analysis reflecting the photosystem II functionality was investigated in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation in a combination with various cut-off filters (WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400) to assess the effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A), and ultraviolet-B (UV-B) radiations on photosynthesis. The photosynthetic activity (PA) was severely inhibited immediately after 10 min of exposure to high PAR, UV-A, and UV-B radiations compared with low PAR grown control samples. After 1 h of exposure, PA of 17.5 ± 2.9% was detected in the high PAR exposed samples compared with the control, while only a trace or no PA was observed in the presence of ultraviolet radiation (UVR). A recovery of PA was recorded after 2 h of the exposure, which continued for next 4, 8, 12, and 24 h. After 24 h of the exposure, PA of 57.5 ± 1.9%, 36.1 ± 11.7%, 23.5 ± 3.3%, 22.3 ± 5.2%, 20.8 ± 6.7%, 13.2 ± 6.6%, and 21.6 ± 9.5% was observed compared with the control sample in 400, 345, 335, 320, 305, 295, and 280 nm cut-off filters-covered samples, respectively. The relative electron transport rate, measured after 24 h exposure, showed also a disturbance in electron transfer between the two photosystems under the high PAR and UVR treatments relative to the control samples, suggesting the inhibition of photosynthesis. This study suggests that both high PAR and UVR inhibited the photosynthetic performance of A. variabilis PCC 7937 by damaging the photosynthetic apparatus, however, photoprotective mechanisms evolved by the organism allowed an immediate repair of ecologically important machinery, and enabled its survival.  相似文献   

4.
Alteration in the photosynthetic apparatus of clusterbean (Cyamopsis tetraganoloba) cotyledons owing to UV-B irradiation in the absence or presence of UV-A radiation (UV-A + UV-B) during steady phase of its growth has been studied. UV-B radiation induces a decline in the photosynthetic pigments content and O2 evolution along with a modification in the absorption spectra of chloroplasts. UV-A + UV-B irradiation moderately reverses these changes. The partial restoration of FV/FM value and other fluorescence transient parameters in UV-A + UV-B treated sample compared to that of UV-B treated one suggest that UV-A helps in developing a protective pathway against UV-B-induced impairment. UV-B-mediated alteration in S state transition of Mn cluster associated with oxygen evolving complex, as appeared from TL glow curves, is retrieved by UV-A radiation and Car is considered to negotiate against UV-B-induced damage of photosynthetic apparatus.  相似文献   

5.
We developed a computer-based system for controlling the photoperiod and irradiance of UV-B and white light from a 5 × 5 light-emitting diode (LED) matrix (100 × 100 mm). In this system, the LED matrix was installed in each of four irradiation boxes and controlled by pulse-width modulators so that each box can independently emit UV-B and white light at irradiances of up to 1.5 and 4.0 W m−2, respectively, or a combination of both light types. We used this system to examine the hatchabilities of the eggs of four Tetranychus spider mite species (T. urticae, T. kanzawai, T. piercei and T. okinawanus) collected from Okinawa Island under UV-B irradiation alone or simultaneous irradiation with white light for 12 h d−1 at 25 °C. Although no eggs of any species hatched under the UV-B irradiation, even when the irradiance was as low as 0.02 W m−2, the hatchabilities increased to >90% under simultaneous irradiation with 4.0 W m−2 white light. At 0.06 W m−2 UV-B, T. okinawanus eggs hatched (15% hatchability) under simultaneous irradiation with white light, whereas other species showed hatchabilities <1%. These results suggest that photolyases activated by white light may reduce UV-B–induced DNA damage in spider mite eggs and that the greater UV-B tolerance of T. okinawanus may explain its dominance on plants in seashore environments, which have a higher risk of exposure to reflected UV-B even on the undersurface of leaves. Our system will be useful for further examination of photophysiological responses of tiny organisms because of its ability to precisely control radiation conditions.  相似文献   

6.
The impact of climatic change on crop production is a major global concern. One of the climatic factors, ultraviolet-B radiation (UV-B; 280–320 nm), which is increasing as a result of depletion of the global stratospheric ozone layer, can alter crop productivity. As the initial step in development of UV-B tolerant rice cultivars for the southern U.S., in this study we screened popular southern U.S. rice cultivars for variation in tolerance to elevated UV-B radiation with respect to morphological, phenological and physiological parameters. Plants grown in the greenhouse at the Texas AgriLife Research and Extension Center in Beaumont, Texas, U.S. were exposed to 0, 8 or 16 kJ m−2 day−1 UV-B radiation for 90 days. Our results showed differences among southern US rice cultivars in response to UV-B treatments with respect to leaf photosynthetic rate (Pn), leaf phenolic concentration, pollen germination (PG), spikelet fertility (SF), leaf number, leaf area, and yield. For most of the cultivars, plants exposed to enhanced UV-B radiation showed decreased Pn, PG, SF and yield and increased spikelet abortion and leaf phenolic concentration compared to the plants grown in a UV-B-free environment. In this study, cultivar ‘Clearfield XL729’ performed better than the other cultivars under enhanced UV-B radiation.  相似文献   

7.
Field study was conducted to evaluate the inter- and intra-specific variations in sensitivity of two cultivars each of wheat (Triticum aestivum L. cv. HD 2329 and HUW 234) and mung bean (Vigna radiata L. cv. Malviya Jyoti and Malviya Janpriya) to supplemental levels of UV-B irradiation (sUV-B, 280–315 nm) with and without recommended levels of mineral nutrients. Results showed decrease in photosynthetic pigments and biomass of all the four cultivars due to sUV-B radiation. Antioxidative defense system was activated in all the cultivars after irradiation with sUV-B. SOD, peroxidase and total thiol contents increased, while catalase activity and ascorbic acid contents decreased under sUV-B irradiation. On the basis of biomass, UV-B sensitivity can be arranged in decreasing order as: Malviya Janpriya < Malviya Jyoti < HD 2329 < HUW 234. Application of mineral nutrients (N, P and K) showed significant positive response in all cultivars by ameliorating the negative impact of sUV-B.  相似文献   

8.
The impact of exclusion of solar UV-B (280–320 nm) and UV-A+B (280–400 nm) radiation on the root nodules was studied in soybean(Glycine max var. MACS 330). Soybean plants were grown in the tropical region of Indore (Latitude-22.4°N), India under field conditions in metal cages covered with polyester exclusion filters that specifically cut off UV-B (<320 nm) and UV-A+B (<400 nm) radiation; control plants were grown under ambient solar radiation. Leghemoglobin content was analyzed in the root nodules on the 50th day after emergence of seedlings. Exclusion of UV radiations significantly enhanced the leghemoglobin content in the nodules on fresh weight basis; 25% and 45% higher amount of leghemoglobin were present in the nodules after the exclusion of UV-B and UV-A+B radiation respectively. Analysis by native and SDS-PAGE showed high intense bands of leghemoglobin after the exclusion of UV-A+B as compared to control. Exclusion of UV radiation also enhanced the growth of roots as well as aerial parts of the plants. UV Exclusion increased nodulation by increase in the number and size of nodules. The results are discussed in the light of advantage of exclusion for enhancing protein/nitrogen content in the plants.  相似文献   

9.
We carried out experiments to evaluate the effects of solarultraviolet radiation (UVR; 280–400 nm) upon primary productionof different natural phytoplankton assemblages (i.e. characteristicof a seasonal cycle) from Patagonia (Argentina) from January2001 to January 2002. The short-term impact of UVR (i.e. measuredas radiocarbon incorporation) was assessed by exposing samplesto solar radiation under six radiation treatments: uncoveredquartz tubes and tubes covered with different cut-off Schottfilters (WG295, WG305, WG320, WG360), and Plexiglas UF-3 (cut-offat 400 nm), so that samples received radiation at five differentintervals within the UVR in addition to photosynthetically activeradiation (PAR), and only PAR, respectively. Phytoplankton compositionand abundance allowed us to differentiate pre-bloom, bloom andpost-bloom periods, with pre- and post-bloom samples characterizedby small cells (e.g. flagellates <10 µm), whereas thebloom was dominated by large diatoms (50 µm). Absolutevalues of photosynthesis inhibition were lower during the bloom,but biological weighting functions (i.e. inhibition per unitenergy) indicated that this assemblage was more sensitive toUVR (especially in the UV-B region, 280–320 nm) than thoseof the pre- and post-bloom periods. UV-A radiation (320–400nm) accounted for most of the reduction in carbon incorporation(>60%), especially during the pre- and post-bloom periods.Most of the observed variability was inter-seasonal, althoughsmall intra-seasonal fluctuations were also observed. Our resultsindicate that the taxonomic composition and cellular size areespecially important when addressing UVR effects upon theseassemblages. However, other factors such as mixing can alsocontribute to the variability in responses to UVR.  相似文献   

10.
Using UV-A, blue (B), green (G), red (R), and far-red (FR) light-emitting diodes (LEDs), we investigated the effects of different supplemental light qualities on phytochemicals and growth of ‘Red Cross’ baby leaf lettuce (Lactuca sativa L.) grown at a high planting density under white fluorescent lamps as the main light source inside a growth chamber. Photon flux added by supplemental LEDs for UV-A, B, G, R and FR were 18, 130, 130, 130 and 160 μmol m?2 s?1, respectively. Photosynthetic photon flux (PPF, 400–700 nm), photoperiod, and air temperature (day/night) was 300 μmol m?2 s?1, 16 h, and 25 °C/20 °C in all treatments including white light control. After 12 days of light quality treatment (22 days after germination), phytochemical concentration and growth of lettuce plants were significant affected by light treatments. Anthocyanins concentration increased by 11% and 31% with supplemental UV-A and B, respectively, carotenoids concentration increased by 12% with supplemental B, phenolics concentration increased by 6% with supplemental R while supplemental FR decreased anthocyanins, carotenoids and chlorophyll concentration by 40%, 11% and 14%, respectively, compared to those in the white light control. The fresh weight, dry weight, stem length, leaf length and leaf width significantly increased by 28%, 15%, 14%, 44% and 15%, respectively, with supplemental FR light compare to white light, presumably due to enhanced light interception by enlarged leaf area under supplemental FR light. Although the mechanisms of changes in phytochemicals under different supplemental light quality are not well known, the results demonstrated that supplemental light quality could be strategically used to enhance nutritional value and growth of baby leaf lettuce grown under white light.  相似文献   

11.
《Journal of plant physiology》2014,171(16):1545-1553
The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.  相似文献   

12.
Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation   总被引:13,自引:8,他引:5       下载免费PDF全文
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.  相似文献   

13.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

14.
The activity of polyphenol oxidase (PPO) and guaiacol peroxidase (POD) and the concentrations of chlorophylls, free polyamines and soluble proteins were determined from the leaves of six genotypes of silver birch (Betula pendula Roth) seedlings exposed to short-term elevated carbon dioxide (CO2), temperature (T), ultraviolet-B irradiation (UV-B, 280-315 nm) and their combinations. Results showed that the activity of PPO in the leaves was low but increased by elevated CO2 and elevated T. The POD activity varied between the genotypes due to an interactive effect of CO2 × UV-B. The soluble proteins were clearly decreased by elevated CO2, but the level of response varied among the genotypes. The concentrations of chl a and total chlorophylls were lower in the leaves treated with elevated CO2 than in leaves grown at ambient CO2. An interactive effect of CO2 × UV-B on the chl a/b ratio was found. Elevated T increased chl b concentration and decreased chl a/b ratio. Temperature treatments also caused variation in the concentrations of chl a, chl b and total chlorophylls among the genotypes. Polyamine analyses showed that the concentrations of putrescine were increased and spermine decreased in leaves treated with elevated T. However, the change in putrescine by elevated T was clearer at ambient CO2 than in eCO2 environment (significant effect of T × CO2). In conclusion, the defensive enzymes, photosynthetic pigments, soluble proteins and growth-regulating polyamines in silver birch leaves were not susceptible to enhanced UV-B radiation. In contrast, all the variables responded to elevated T and/or elevated CO2, reflecting the enhancive effects of climate change conditions not only on leaf productivity, but also on leaf turn-over rate. Most of these climate-driven changes were not regulated by UV-B radiation.  相似文献   

15.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

16.
The effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities inPhaseolus mungo L. was investigated under field condition. Supplementation of UV-A enhanced the synthesis of chlorophyll and carotenoids than the UV-B supplemented plants. Significant increase was seen in the concentration of UV-B absorbing compounds of UV-B treated plants. Increase of PS 2 activity in UV-A treated plants was seen. Changes in photosynthetic activity were measured in terms of PS 2 mediated O2 evolution and Chl a fluorescence.  相似文献   

17.
Fifteen populations of tartary buckwheat (Fagopyrum tataricum Gaertn.) occurring in habitats with different natural UV-B levels were sampled, and the plants were exposed to enhanced UV-B radiation under field conditions simulating 25% depletion of the stratospheric ozone layer. The experimental design was a 2 × 15 factorial, with two levels of UV-B radiation (ambient and enhanced UV-B radiation) and plants from 15 populations. The responses of plants in growth, morphology, productivity and in the composition of photosynthetic pigments were measured. The results demonstrated that there were significant differences among populations in responses to UV-B radiation: some populations exhibited a positive effect while others were negatively affected. The UV-B effects on plant traits were correlated with the constitutive values. A principal component analysis (PCA) was used to evaluate the overall sensitivity of responses to UV-B radiation. Our results suggest that the sensitivity of plants to UV-B radiation is not only associated with the ambient UV-B level in natural habitats but also with the relative growth rate and other factors.  相似文献   

18.
This paper examined the peel (albedo and flavedo) of postharvest lemon fruits after UV-B exposure in order to analyze relationships between soluble carbohydrate metabolism and secondary metabolite accumulation. Lemons (Citrus limon, cv. Limoneira 8A) were harvested in winter months (June to August), treated with 0.43 W m−2 (22 kJ m−2 d−1 UV-BBE) of UV-B radiation during 0 (control), 0.5, 1.0, 2.0, 3.0, and 5.0 min, and then stored at 25 °C for 24 h. Peel samples from irradiated areas were obtained with a razor blade and frozen in liquid nitrogen until use for measurements. Data obtained showed that 2 and 3 min of UV-B exposure effectively increased the level of UV-B absorbing compounds and total phenolics in flavedo without causing visual alterations of the peel colour as compared with non-irradiated lemons. By contrast, there were no significant changes in albedo secondary metabolite accumulation. The amount of secondary metabolites was depending upon UV-B time–dose. Exposure over 3.0 min did not further improve the accumulation of UV-B absorbing and phenolic compounds. Soluble sugars (sucrose, glucose and fructose) also accumulated in the lemon peel after UV-B exposure, but the distribution patterns were different. After 3 min time–dose, sucrose and hexoses increased in flavedo, whereas in albedo only increased the sucrose and glucose. This effect was related to UVB-induced changes in the activity of sucrose-hydrolyzing and sucrose-synthesizing enzymes: soluble and cell-bound invertase, sucrose synthase (SS) and sucrose phosphate synthase (SPS). Data indicate that lemon peel retains the capacity to modify the enzyme activity of sucrose metabolism in response to UV-B exposure. Our results also suggest that the exposure of postharvest lemons to low supplemental UV-B doses produces changes in the carbon allocation of peel tissues including synthesis, but probably not only limited to them, of UV-B absorbing and phenolic compounds.  相似文献   

19.
Acridin-3,6-dialkyldithiourea hydrochlorides (AcrDTUs) have been evaluated as a new group of photosensitizers (PSs) for photodynamic antitumor therapy (PDT). Mouse leukemia cells L1210 were used for testing of AcrDTUs as the new PSs. The irradiation (UV-A light (365 nm), 1.05 J/cm2) increased cytotoxicity of all derivatives against L1210 cells more than ten times. The highest photocytotoxicity was found for propyl-AcrDTU with IC50 = 0.48 ± 0.03 μM after 48 h incubation. A generation of the superoxide radical anion upon UV-A irradiation of propyl-AcrDTU was confirmed by in situ photochemical EPR experiments. To explain a mechanism of photocytotoxic action of AcrDTUs, an intracellular distribution of propyl-AcrDTU has been studied. It was found that AcrDTU in non-irradiated cells was not present in their nucleus but in the lysosomes and partly in the mitochondria, and sequestration of propyl-AcrDTU was dependent on pH in lysosomes. After irradiation, the cell death was induced by oxidative damage of lysosomal and mitochondrial membranes. Concerning the cell cycle, flow cytometry after PDT with propyl-AcrDTU showed a significant increase of the cells in the subG0 phase. Observed signs of necrosis, apoptosis, and autophagy indicate that PDT/AcrDTU leads to multiple cell death types (caspase independent apoptosis, necrosis, and autophagy).  相似文献   

20.
The aim of the paper was to determine the effect of water deficit (WD) and UV-B radiation acting individually and in combination on salicylic acid (SA) accumulation as well as on the activity of phenylalanine ammonia-lyase (PAL) and benzoic acid hydroxylase (BA2H) that control its biosynthetic route from phenylalanine. An additional aim was to test whether the interaction of these stresses limits the negative effect of a single stress on tissue hydration and membrane injury. Two-week-old seedlings were subjected to water deficit (WD), UV-B irradiation (UV-B) and three different combinations of WD and UV-B: (I) WD and UV-B applied at the same time, (II) UV-B applied before WD, and (III) WD applied before UV-B. Water deficit was imposed by immersing the root system in aerated nutrient solution with polyethylene glycol (PEG 6000) of water potential – 0.5 MPa. UV-B dosage was 24 kJ m−2 day−1 (0.84 W m−2) at the canopy level. UV-B and WD imposed individually and jointly, caused, in a time-dependent manner, an increase in SA content in both organs. Increased levels of SA in WD stressed plants were accompanied by an increase in the activity of PAL and BA2H. However, in plants exposed to UV-B were accompanied only by an increase in the activity of BA2H. Under WD conditions, an earlier increase of SA content was observed in roots than in leaves, which may indicate the involvement of SA in the signal transduction between roots and leaves. In plants exposed to sequential action of WD and UV-B, regardless of the order of its imposition, the effect of each single factor on SA accumulation in leaves was strengthened. WD had a greater effect on water loss and membrane injury than UV-B radiation. In plants exposed to WD after pre-treatment with UV-B radiation, a cross-tolerance mechanism was observed. Leaves of these plants did not show increased lipid peroxidation, measured in terms of malondialdehyde content, and a decrease in water content. This protective action was probably caused by the increase of the SA level in leaves of the UV-B treated plants prior to WD imposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号