首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An overlap between subpopulations of nerve growth factor (NGF)-responsive and capsaicin-sensitive dorsal root ganglion (DRG) sensory neurons has been suggested from a number of in vivo studies. To examine this apparent link in more detail, we compared the effects of capsaicin on adult rat DRG neurons cultured in the presence or absence of NGF. Capsaicin sensitivity was assessed histochemically by a cobalt staining method, by measuring capsaicin-induced 45Ca2+ uptake, and by electrophysiological recording of capsaicin-evoked membrane currents. When cultured with NGF, approximately 50% of these adult DRG neurons were capsaicin-sensitive, whereas adult sympathetic neurons or ganglionic nonneuronal cells were insensitive. DRG cultures grown in the absence of NGF, however, were essentially unresponsive to capsaicin. Capsaicin sensitivity could be regained fully within 4-6 days of replacement of NGF. These results indicate that, at least in vitro, NGF can modify the capsaicin sensitivity of adult DRG neurons.  相似文献   

2.
Capsaicin, which induces fluxes of sodium, calcium, and potassium ions in a subset of both neonatal and adult rat dorsal root ganglion neurones, increased cyclic GMP (cGMP) levels by a factor of 20 (EC50 0.07 microM) to 10-20 pmol cGMP/mg protein in these cells. Cyclic AMP (cAMP) levels were unaffected. Nonneuronal cells derived from rat ganglia, and both neurones and nonneuronal cells from chick were unresponsive to capsaicin. Capsaicin-induced cGMP elevation in rat dorsal root ganglion (DRG) neurones was unaffected by pertussis toxin, lowered by compounds that block voltage-sensitive calcium channels, and was abolished by the removal of extracellular calcium. Calcium, guanidine, and rubidium fluxes were unaffected by treatment of DRG cells with sodium nitroprusside or dibutyryl cGMP. The cGMP response to capsaicin is thus a function of capsaicin-evoked calcium uptake through voltage-sensitive calcium channels. Elevated cGMP levels do not, however, contribute to capsaicin-evoked ion fluxes or to their desensitisation.  相似文献   

3.
Galanin is a 29-amino-acid neuropeptide expressed in dorsal root ganglion (DRG) neurons which is thought to play a role in modulation of nociception in neuropathic states. Activation of galanin receptor 2 (GalR2) plays a pronociceptive role and enhances capsaicin-induced nociception in the periphery. GalR2 and vanilloid receptor 1 (VR1) are co-expressed in DRG neurons. Capsaicin evokes acute pain via activation of VR1 expressed in primary sensory neurons. It is not known to what extent galanin and its receptor GalR2 expression is regulated by capsaicin in DRG neurons. Effects of acute (4 h) or chronic (4 d) treatment with capsaicin at different concentrations (0.01, 0.1, 1 micromol/L) on galanin and GalR2 expression in primary cultured DRG neurons were investigated in the present study. Our results showed that acute exposure of high concentration capsaicin (1 micromol/L) increased galanin expression, whereas chronic exposure of low concentration capsaicin (0.01, 0.1 micromol/L) promoted galanin expression. Only chronic exposure of 0.1 micromol/L concentration capsaicin could elevate GalR2 expression, whereas capsaicin did not have this effect at any other conditions in this experiment. These results indicated that certain concentrations or exposure time of capsaicin stimulation may be relevant to upregulation of galanin and its receptor GalR2 expression in DRG cultures suggesting a response to peripheral neuronal stimulation. And also, capsaicin-induced GalR2 expression may be also modulated by capsaicin-induced galanin expression. The possible significance of the neurotransmission of nociceptive information involved in galanin or GalR2 expression caused by capsaicin is still to be clarified.  相似文献   

4.
Bradykinin, which activates polymodal nociceptors, increased cyclic GMP (cGMP) in a capsaicin-sensitive population of cultured sensory neurones from rat dorsal root ganglia (DRG) by stimulating guanylate cyclase, but had no effect on cyclic AMP (cAMP). In nonneuronal cells from DRG, bradykinin increased cAMP, but not cGMP. The bradykinin-induced increase in cGMP in the neurones was completely blocked by removal of extracellular Ca2+, or by incubation of the cells with the calcium channel blockers nifedipine and verapamil. Pretreatment of the neurones with either dibutyryl cGMP or sodium nitroprusside (which elevates cGMP) inhibited bradykinin-induced formation of inositol phosphates. It is possible that cGMP could be involved in the regulation of polyphosphoinositide turnover in DRG neurones.  相似文献   

5.
Previous study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown. In the present study, expression of PAR4 in cultured rat DRG neurons was observed using immunofluorescence, real-time PCR and Western blots to examine whether increases in PAR4 mRNA and protein levels are induced by capsaicin treatment with or without pre-treatment of forskolin, a cyclic AMP/protein kinase A (cAMP/PKA) activator or PKA inhibitor fragment 14-22 (PKI14-22), a PKA inhibitor. Capsaicin treatment of cultured DRG neurons significantly increased the expression of PAR4 in mRNA and protein levels. The percentage of PAR4-, TRPV1-immunoreactive neurons and their co-localization in cultured DRG neurons increased significantly in the presence of capsaicin as compared with that in the absence of capsaicin. Compared with capsaicin-only group, pre-incubation with forskolin strongly enhanced the capsaicin-induced increase of PAR4 in mRNA and protein levels. Consistent with the involvement of PKA in the modulation of PAR4 expression, this evoked expression both at mRNA and protein levels was significantly inhibited after PKA was inhibited by pre-incubation with PKI14-22. Taken together, these results provide evidence that TRPV1 activation significantly increases the expression of PAR4 mRNA and protein levels in primary cultures of DRG neurons after capsaicin incubation. Effects of capsaicin on PAR4 expression appear to be mediated by cAMP/PKA signal pathways in DRG neurons.  相似文献   

6.
The involvement and the role of nitric oxide (NO) as a signaling molecule in the course of neuronal apoptosis, whether unique or modulated during the progression of the apoptotic program, has been investigated in a cellular system consisting of cerebellar granule cells (CGCs) where apoptosis can be induced by lowering extracellular potassium. Several parameters involved in NO signaling pathway, such as NO production, neuronal nitric oxide synthase (nNOS) expression, and cyclic GMP (cGMP) production were examined in the presence or absence of different inhibitors. We provide evidence that nitric oxide has dual and opposite effects depending on time after induction of apoptosis. In an early phase, up to 3 h of apoptosis, nitric oxide supports survival of CGCs through a cGMP-dependent mechanism. After 3 h, nNOS expression and activity decreased resulting in shut down of NO and cGMP production. Residual NO then contributes to the apoptotic process by reacting with rising superoxide anions leading to peroxynitrite production and protein inactivation. We conclude that whilst NO over-production protects neurons from death in the early phase of neuronal damage, its subsequent reduction may contribute to neuronal degeneration and ultimate cell death.  相似文献   

7.
Abstract: Treatment of rat cerebellar astrocyte-enriched primary cultures with dexamethasone enhances the nitric oxide-dependent cyclic GMP formation induced by noradrenaline in a time-(>6 h) and concentration-dependent manner (half-maximal effect at 1 n M ). Stimulation of cyclic GMP formation by the calcium ionophore A23187 is similarly enhanced. In contrast, cyclic GMP accumulation in cells treated with lipopolysaccharide is inhibited by dexamethasone. The potentiating effect of dexamethasone is prevented by the protein synthesis inhibitor cycloheximide and is not due to increased soluble guanylate cyclase activity. Agonist stimulation of [3H]arginine to [3H]citrulline conversion is enhanced by dexamethasone in astrocytes but not in cerebellar granule cells. These results indicate that glucocorticoids may up-regulate astroglial calcium-dependent nitric oxide synthase while preventing expression of inducible nitric oxide synthase and are the first report of a differential long-term regulation of the expression of neuronal and astroglial constitutive nitric oxide synthase activities.  相似文献   

8.
The neurotoxic effect of capsaicin has been shown to be selective on a subpopulation of small dorsal root ganglion neurons in newborn animals. The aim of this study was to provide evidence of the long lasting effect of capsaicin and its ultrapotent analog resiniferatoxin (RTX) on sensory peptidergic neurons maintained in organotypic cultures. The effects of the two irritants were examined on neurons that contained substance P (SP) and calcitonin gene-related peptide (CGRP). Exposure of the cultures to 10 microM capsaicin and 100 nM RTX for periods of 2 days or longer resulted in almost complete elimination of SP-immunoreactive (IR) neurites and reduction, but not elimination, of CGRP-IR neurites. In addition, both 10 microM capsaicin and 100 nM RTX significantly reduced the number of SP- and CGRP-IR cell bodies within DRG explants. Capsaicin in 100 microM concentration produced complete elimination of SP-IR fibers and a greater decrease in the number of CGRP-IR fibers, but failed to completely eliminate IR cell bodies. Exposure of the cultures to the irritants in the same concentrations for 90 min did not produce a measurable effect on SP- or CGRP-IR in neurites or cell bodies. It is important to establish that the effect of capsaicin and RTX on cultured neurons was of long duration (longer than 4 days) and is therefore different from depletion of peptides. These findings demonstrate that processes of cultured sensory neurons are much more sensitive to capsaicin and RTX than cell bodies. Furthermore, our results show that SP-IR neuronal elements are more sensitive to capsaicin than CGRP-IR elements. These data suggest that cultured sensory neurons express the functional properties of differentiated sensory neurons in vivo.  相似文献   

9.
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.  相似文献   

10.
Ca2+ selective ion channels of vanilloid receptor subtype-1 (TRPV1) in capsaicin-sensitive dorsal root ganglion (DRG) neurons and TRPV1 transfected Chinese hamster ovarian (CHO) cells are desensitized following calcium-dependent tachyphylaxis induced by successive applications of 100 nM capsaicin. Tachyphylaxis of TRPV1 to 100 nM capsaicin stimuli was not observed in the absence of extracellular calcium. Capsaicin sensitivity of desensitized TRPV1 ion channels recovered on application of phorbol-12-myristate-13-acetate (PMA). PMA-induced recovery of desensitized TRPV1 was primarily due to influx of extracellular calcium observed during re-application of capsaicin following desensitization. Capsazepine blocked the re-sensitization to capsaicin by PMA. Protein kinase C (PKC) inhibitory peptide PKC fragment 19-36 also inhibited re-sensitization to capsaicin by PMA. Reversal of capsaicin-induced desensitization by PMA was prevented by a mutation of TRPV1 where phosphorylation sites serine502 and serine800 were replaced with alanine. This study provides evidence for a role of PKC in reversing capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels.  相似文献   

11.
Capsaicin was applied to the exposed radial nerve of adult flying foxes (n = 5) and cats (n = 2) while recording in primary somatosensory cortex from a single neuron with a receptive field on digits 1 or 2. Within four minutes of application of capsaicin the borders of these receptive fields dramatically expanded. In a further four flying foxes it was shown, with subcutaneous delivery just proximal to the receptive fields, that capsaicin need affect only afferents from the region of a neuron's receptive field to induce expansion. Capsaicin applied directly to a nerve, or subcutaneously in high concentrations, is a selective neurotoxin that rapidly prevents the propagation of action potentials in most C-fibres. The result provides a partial explanation for experiments involving the specific and complete denervation of receptive fields of neurons in primary somatosensory cortex. Such denervation does not lead to unresponsiveness but to immediate sensitivity to stimulation of areas surrounding the original fields. Thus it appears that some subclass of capsaicin-sensitive C-fibres provides a primary source for the masking inhibition that normally limits the extent of the receptive fields of cortical neurons.  相似文献   

12.
Abstract: The effects of arginine on calcium mobilization in human SK-N-SH neuroblastoma cells were examined. It was found that arginine potentiated an increase in carbachol-induced Ca2+ from the external Ca2+ influx as opposed to an internal Ca2+ release from intracellular pools. The potentiation effect of arginine on carbachol-induced calcium mobilization was mimicked by either 8-bromo cyclic GMP or sodium nitroprusside. In addition, it was found that arginine induced NO production and an increase in cyclic GMP. Moreover, arginine-induced potentiation, NO production, and cyclic GMP increases were all suppressed after the preincubation of cells with N -methyl- l -arginine or N -nitro- l -arginine, nitric oxide synthase inhibitor. It is suggested that the NO production and subsequent cyclic GMP elevation induced by arginine are responsible for the potentiation of carbachol-induced Ca2+ increase. Our results show the existence of a NO/cyclic GMP pathway and an interconnection of NO and Ca2+ signaling pathways in human SK-N-SH neuroblastoma cells. We also observed that NO, which is produced by endothelial CPAE cells, has a modulating effect on cyclic GMP elevation in human SK-N-SH neuroblastoma cells. The intercellular communication role of NO and its cell-diffusing character may also affect the regulation of nonneuronal cells in their interactions with neuronal cells.  相似文献   

13.
To determine the type and the relative amount of prostaglandins (PGs) synthesized by various neural tissues, homogenates of meninges, dorsal root ganglia (DRG) capsules, decapsulated DRG, and unsheathed sciatic nerves were incubated with [1-14C]arachidonic acid. Homogenates of cultured cells (meningeal cells, fibroblasts, and nonneuronal or neuronal DRG cells) were used to specify the cells producing particular PGs. The highest synthetic capacity was found in fibroblast-rich tissues (meninges and DRG capsules) and in cultures of meningeal cells or fibroblasts. Two major cyclooxygenase products were formed: [14C]PGE2 and an unusual 14C-labeled compound, Y. The accumulation of compound Y, corresponding probably to 15-hydroperoxy PGE2, was completely impaired by addition of exogenous GSH, which conversely enhanced the synthesis of [14C]PGE2 and promoted the formation of [14C]PGD2. In contrast, decapsulated DRG or unsheathed sciatic nerves displayed a 10-20 times lower capacity to synthesize PGs than fibroblast-rich tissues and produced mainly [14C]PGE2 and [14C]PGD2. In this case, [14C]PGE2 or [14C]PGD2 synthesis was neither enhanced nor promoted by addition of exogenous GSH. Neuron-enriched DRG cell cultures allowed us to specify that [14C]PGD2 is the major prostanoid produced by primary sensory neurons as compared with nonneuronal DRG cells. Because PGD2 synthesis in DRG and more specifically in DRG neurons does not depend on exogenous GSH and differs from PGD2 synthesis in fibroblast-rich tissues, it is concluded that at least two distinct enzymatic processes contribute to PGD2 formation in the nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Capsaicin stimulation of afferent neurones increased hyperglycaemic responses to glucose and decreased hypoglycaemia in control rats. Elevation of the free fatty acids level occurred following both the stimulation alone and that combined with insulin. Neonatal capsaicin pre-treatment decreased the hypoglycaemic response effect of insulin and the FFA level. Treatment of adult rats with capsaicin did not affect hypoglycaemia following insulin administration but did decrease the FFA level. In capsaicin pre-treated rats, the capsaicin stimulation exerted no effect upon the hypoglycaemia following insulin administration but abolished the insulin effect on the FFA level. The findings suggest that the capsaicin-sensitive nerves play a major role in mediating the glucose and the FFA metabolic responses.  相似文献   

15.
Effect of a synthetic atrial natriuretic peptide, rat atriopeptin II (rAP-II) on the formation of cyclic nucleotides and progesterone production in Percoll-purified rat luteal cells was investigated. Incubation of luteal cells with varying concentrations of rAP-II resulted in a dose-related stimulation of intracellular cyclic GMP content; maximum stimulation being achieved with 10 nM rAP-II. The increase in cyclic GMP formation was extremely rapid and a 12-fold increase in the cyclic GMP content over basal level was attained within 5 min of incubation of the cells with 10 nM rAP-II. In the presence of phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine, both basal and rAP-II-stimulated levels of cyclic GMP were increased approximately 10 times, but the magnitude of stimulation remained similar in the presence or absence of the inhibitor. The atrial peptide at the concentration of 1-100 nM, however, had no effect on either basal or gonadotropin-stimulated progesterone production and cyclic AMP formation by the luteal cells. Furthermore, the increase in the level of cellular cyclic GMP content of rAP-II was demonstrated to result from a selective activation of particulate guanylate cyclase.  相似文献   

16.
Abstract: Muscarinic receptor-mediated cyclic GMP formation and release of nitric oxide (NO) (or a precursor thereof) were compared in mouse neuroblastoma N1E-115 cells. [3H]Cyclic GMP was assayed in cells prelabeled with [3H]guanine. Release of NO upon the addition of muscarinic agonists to unlabeled neuroblastoma cells (NO donor cells) was quantitated indirectly by its ability to increase the [3H]cyclic GMP level in labeled cells whose muscarinic receptors were inactivated by irreversible alkylation (NO detector cells). Carbachol increased NO release in a concentration-dependent manner, with half-maximal stimulation at 173 μ M (compared to 96 μ M for direct activation of cyclic GMP formation). The maximal effect of carbachol in stimulating release of NO when measured indirectly was lower than that in elevating [3H]cyclic GMP directly in donor cells. Hemoglobin was more effective in blocking the actions of released NO than in attenuating direct stimulation of [3H]cyclic GMP synthesis. There was a good correlation between the ability of a series of muscarinic agonists to release NO or to activate [3H]cyclic GMP formation directly, and the potency of pirenzepine in inhibiting the two responses. Furthermore, there was a similar magnitude of desensitization of both responses by prolonged receptor activation or stimulation of protein kinase C. NO release was also regulated in relation to the cellular growth phase. A model is proposed in which a fraction of NO generated upon receptor activation does not diffuse extracellularly and stimulates cyclic GMP synthesis within the same cell where it is formed (locally acting NO). The remainder of NO that is extruded extracellularly might travel to neighboring cells (neurotransmitter NO) or might be taken back into the cells of origin (homing NO).  相似文献   

17.
Compensatory adrenal growth, in which one gland undergoes hyperplasia after removal of the other, is mediated by a neural reflex. In the present studies, a method employing capsaicin to selectively remove adrenal sensory fibers was developed and applied to determine whether adrenal capsaicin-sensitive fibers participate in compensatory adrenal growth. The splanchnic nerves of anesthetized male rats were treated with capsaicin or vehicle. Capsaicin treatment selectively removed adrenal calcitonin gene-related peptide-positive fibers. One week after drug treatment, rats underwent left adrenalectomy or sham surgery and recovered for 5 days. Capsaicin treatment bilaterally or to the left splanchnic nerve alone (i.e., the afferent nerve in the reflex) impaired compensatory adrenal growth at 5 days compared with vehicle controls, whereas capsaicin treatment to the right splanchnic nerve alone did not affect growth. Moreover, left adrenalectomy induced c-Fos immunolabeling in ipsilateral dorsal spinal cord that was prevented by capsaicin treatment. These data suggest that adrenal capsaicin-sensitive afferent nerves participate in compensatory adrenal growth and that this effect is primarily on the afferent limb of the reflex.  相似文献   

18.
We studied the effects of selective loss of capsaicin-sensitive primary sensory neurons on thermosensation and thermoregulation in rats. Neonatal capsaicin treatment in rats caused a remarkable decrease in the number of small-diameter neurons in the dorsal root ganglion (DRG) compared with their number in the control rats. Gene expression analysis for various thermo-sensitive transient receptor potential (TRP) channels indicated marked reductions in the mRNA levels of TRPV1 (70%), TRPM8 (46%) and TRPA1 (64%), but not of TRPV2, in the DRG of capsaicin-treated rats compared with those in the control rats. In addition to the heat and cold insensitivity, capsaicin-treated rats showed lower rectal core temperature, higher skin temperature and decreased sensitivity to ambient temperature alteration under normal housing at room temperature, suggesting impaired thermosensation and change in thermoregulation in the rats. Uncoupling protein 1 (UCP1) expression and the thermogenic ability in brown adipose tissues were attenuated in the capsaicin-treated rats. These results indicate a critical role of capsaicin-sensitive sensory neurons in both heat and cool sensation and hence in basal thermal homeostasis, which is balanced by heat release and production including UCP1 thermogenesis, following sensation of the ambient temperature.  相似文献   

19.
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.  相似文献   

20.
A Dray 《Life sciences》1992,51(23):1759-1765
Capsaicin produces pain by selectively activating polymodal nociceptive neurons. This involves a membrane depolarization and the opening of a unique, cation-selective, ion channel which can be blocked by ruthenium red. The capsaicin-induced activation is mediated by a specific membrane receptor which can be selectively and competitively antagonised by capsazepine. Repetitive administrations of capsaicin produces a desensitization and an inactivation of sensory neurons. Several mechanisms are involved. These include receptor inactivation, block of voltage activated calcium channels, intracellular accumulation of ions leading to osmotic changes and activation of proteolytic enzyme processes. Systemic and topical capsaicin produces a reversible antinociceptive and antiinflammatory action after an initial undesirable algesic effect. Capsaicin analogues, such as olvanil, have similar properties with minimal initial pungency. Systemic capsaicin produces antinociception by activating capsaicin receptors on afferent nerve terminals in the spinal cord. Spinal neurotransmission is subsequently blocked by a prolonged inactivation of sensory neurotransmitter release. Local or topical application of capsaicin blocks C-fibre conduction and inactivates neuropeptide release from peripheral nerve endings. These mechanisms account for localized antinociception and the reduction of neurogenic inflammation respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号