首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isothiocyanates (ITCs) found in cruciferous vegetables, including benzyl-ITC (BITC), phenethyl-ITC (PEITC), and sulforaphane (SFN), inhibit carcinogenesis in animal models and induce apoptosis and cell cycle arrest in various cell types. The biochemical mechanisms of cell growth inhibition by ITCs are not fully understood. Our recent study showed that ITC binding to intracellular proteins may be an important initiating event for the induction of apoptosis. However, the specific protein target(s) and molecular mechanisms were not identified. In this study, two-dimensional gel electrophoresis of human lung cancer A549 cells treated with radiolabeled PEITC and SFN revealed that tubulin may be a major in vivo binding target for ITC. We examined whether binding to tubulin by ITCs could lead to cell growth arrest. The proliferation of A549 cells was significantly reduced by ITCs, with relative activities of BITC > PEITC > SFN. All three ITCs also induced mitotic arrest and apoptosis with the same order of activity. We found that ITCs disrupted microtubule polymerization in vitro and in vivo with the same order of potency. Mass spectrometry demonstrated that cysteines in tubulin were covalently modified by ITCs. Ellman assay results indicated that the modification levels follow the same order, BITC > PEITC > SFN. Together, these results support the notion that tubulin is a target of ITCs and that ITC-tubulin interaction can lead to downstream growth inhibition. This is the first study directly linking tubulin-ITC adduct formation to cell growth inhibition.  相似文献   

2.
Benzyl isothiocyanate modifies expression of the G2/M arrest-related genes   总被引:1,自引:0,他引:1  
Naturally occurring isothiocyanates are effective chemoprotective agents against chemical carcinogenesis in experimental animals. In the present study, we clarified the molecular mechanism underlying the relationship between benzyl isothiocyanate (BITC)-induced cell cycle arrest and apoptosis. The exposure of HL-60 cells to BITC resulted in the inhibition of the G2/M progression that coincided with the apoptosis induction. We demonstrated that BITC significantly up-regulated expression of the G2/M cell cycle arrest-regulating genes including p21, GADD45, and 14-3-3sigma. Thus, these gathered data further supported that BITC has a potential to induce apoptosis selectively in the proliferating pre-cancerous cells through a cell cycle arrest-dependent mechanism.  相似文献   

3.
4.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

5.
Vpr of human immunodeficiency virus type 1 causes cell cycle arrest at the G(2)/M phase and induces apoptosis after G(2)/M arrest in primate cells. We have reported previously that Vpr also induces apoptosis independently of G(2)/M arrest in human HeLa cells. By contrast, Vpr does not induce G(2)/M arrest in rodent cells, but it retards cell growth. To clarify the relationship between cell cycle arrest and apoptosis, we expressed Vpr endogenously in rodent cells and investigated cell cycle profiles and apoptosis. We show here that Vpr induces cell cycle arrest at the G(1) phase and apoptosis in rodent cells. Vpr increased the activity of caspase-3 and caspase-9, but not of caspase-8. Moreover, Vpr-induced apoptosis could be inhibited by inhibitors of caspase-3 and caspase-9, but not by inhibitor of caspase-8. We also showed that Vpr induces the release of cytochrome c from mitochondria into the cytosol and disrupts the mitochondrial transmembrane potential. Finally, we showed that apoptosis occurred in HeLa cells through an identical pathway. These results suggest that disruption of mitochondrial functions by Vpr induces apoptosis via cell cycle arrest at G(1), but that apoptosis is independent of G(2)/M arrest. Furthermore, it appears that Vpr acts species-specifically with respect to induction of cell cycle arrest but not of apoptosis.  相似文献   

6.
Survivin is a novel anti-apoptotic protein that is highly expressed in cancer but is undetectable in most normal adult tissues. It was reported that taxol-mediated mitotic arrest of cancer cells is associated with survivin induction, which preserves a survival pathway and results in resistance to taxol. In this study, we provide new evidence that induction of survivin by taxol is an early event and is independent of taxol-mediated G(2)/M arrest. Taxol treatment of MCF-7 cells rapidly up-regulated survivin expression (3.5-15-fold) within 4 h without G(2)/M arrest. Lengthening the treatment of cells (48 h) with taxol resulted in decreased survivin expression in comparison with early times following taxol treatment, although G(2)/M cells were significantly increased at later times. Interestingly, 3 nm taxol induces survivin as effectively as 300 nm and more effectively than 3000 nm. As a result, 3 nm taxol is ineffective at inducing cell death. However, inhibition of taxol-mediated survivin induction by small interfering RNA significantly increased taxol-mediated cell death. Taxol rapidly activated the phosphatidylinositol 3-kinase/Akt and MAPK pathways. Inhibition of these pathways diminished survivin induction and sensitized cells to taxol-mediated cell death. A cis-acting DNA element upstream of -1430 in the survivin pLuc-2840 construct is at least partially responsible for taxol-mediated survivin induction. Together, these data show, for the first time, that taxol-mediated induction of survivin is an early event and independent of taxol-mediated G(2)/M arrest. This appears to be a new mechanism for cancer cells to evade taxol-induced apoptosis. Targeting this survival pathway may result in novel approaches for cancer therapeutics.  相似文献   

7.
Curcumin from the rhizome of the Curcuma longa plant has been noted for its chemo-preventative and chemo-therapy activities, and it inhibits the growth of many types of human cancer cell lines. In this study, the mechanisms of cell death involved in curcumin-induced growth inhibition, including cell cycle arrest and induction of apoptosis in human tongue cancer SCC-4 cells, were investigated. Herein, we observed that curcumin inhibited cell growth of SCC-4 cells and induced cell death in a dose-dependent manner. Treatment of SCC-4 cells with curcumin caused a moderate and promoted the G(2) /M phase arrest, which was accompanied with decreases in cyclin B/CDK1 and CDC25C protein levels. Moreover, curcumin significantly induced apoptosis of SCC-4 cells with a decrease of the Bcl-2 level, reduction of mitochondrial membrane potential (ΔΨ(m) ), and promoted the active forms of caspase-3. Curcumin also promoted the releases of AIF and Endo G from the mitochondria in SCC-4 cells by using confocal laser microscope. Therefore, we suggest that curcumin induced apoptosis through a mitochondria-dependent pathway in SCC-4 cells. In addition, we also found that curcumin-induced apoptosis of SCC-4 cells was partly through endoplasmic reticulum stress. In conclusion, curcumin increased G(2) /M phase arrest and induced apoptosis through ER stress and mitochondria-dependent pathways in SCC-4 cells.  相似文献   

8.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

9.
S Ning  S J Knox 《Radiation research》1999,151(6):659-669
Cells of the TP53-deficient human leukemia cell line HL60 continue to progress throughout the cell cycle and arrest in the G2/M phase during protracted exposure to exponentially decreasing low-dose-rate radiation. We have hypothesized that G2/M-phase arrest contributes to the extent of radiation-induced cell death by apoptosis as well as to overall cell killing. To test this hypothesis, we used caffeine and nocodazole to alter the duration of G2/M-phase arrest of HL60 cells exposed to exponentially decreasing low-dose-rate irradiation and measured the activity of G2/M-phase checkpoint proteins, redistribution of cells in the phases of the cell cycle, cell death by apoptosis, and overall survival after irradiation. The results from these experiments demonstrate that concomitant exposure of HL60 cells to caffeine (2 mM) during irradiation inhibited radiation-induced tyrosine 15 phosphorylation of the G2/M-phase transition checkpoint protein CDC2/p34 kinase and reduced G2/M-phase arrest by 40-46% compared to cells irradiated without caffeine. Radiation-induced apoptosis also decreased by 36-50% in cells treated with caffeine and radiation compared to cells treated with radiation alone. Radiation survival was significantly increased by exposure to caffeine. In contrast, prolongation of G2/M-phase arrest by pre-incubation with nocodazole enhanced radiation-induced apoptosis and overall radiation-induced cell killing. To further study the role of cell death by apoptosis in the response to exponentially decreasing low-dose-rate irradiation, HL60 cells were transfected with the BCL2 proto-oncogene. The extent of G2/M-phase arrest was similar for parental, neomycin-transfected control and BCL2-transfected cells during and after exponentially decreasing low-dose-rate irradiation. However, there were significant differences (P < 0.01) in the extent of radiation-induced apoptosis of parental and neomycin- and BCL2-transfected cells after irradiation, with significantly less radiation-induced apoptosis and higher overall survival in BCL2-transfected cells than similarly irradiated control cells. These data demonstrate that radiation-induced G2/M-phase arrest and subsequent induction of apoptosis play an important role in the response of HL60 cells to low-dose-rate irradiation and suggest that it may be possible to increase radiation-induced apoptosis by altering the extent of G2/M-phase arrest. These findings are clinically relevant and suggest a novel therapeutic strategy for increasing the efficacy of brachytherapy and radioimmunotherapy.  相似文献   

10.
We have recently shown that the expression levels of both cannabinoid receptors CB(1) and CB(2) are higher in human prostate cancer cells than in normal prostate epithelial cells, and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB(1)/CB(2) agonist) resulted in inhibition of cell growth and induction of apoptosis (Sarfaraz, S., Afaq, F., Adhami, V. M., and Mukhtar, H. (2005) Cancer Res. 65, 1635-1641). This study was conducted to understand the mechanistic basis of these effects. Treatment of LNCaP cells with WIN-55,212-2 (1-10 microm; 24 h) resulted in: (i) an arrest of the cells in the G(0)/G(1) phase of the cell cycle; (ii) an induction of p53 and p27/KIP1; (iii) down-regulation of cyclins D1, D2, E; (iii) decrease in the expression of cdk-2, -4, and -6; (iv) decrease in protein expression of pRb; (v) down-regulation of E2F (1-4); and (vi) decrease in the protein expression of DP1 and DP2. Similar effects were also observed when androgen-independent PC3 cells were treated with WIN-55,212-2 (5-30 microm). We further observed sustained up-regulation of ERK1/2 and inhibition of PI3k/Akt pathways in WIN-55,212-2-treated cells. Inhibition of ERK1/2 abrogated WIN-55,212-2-indued cell death suggesting that sustained activation of ERK1/2 leads to cell cycle dysregulation and arrest of cells in G(0)/G(1) phase subsequently leading to an induction of apoptosis. Further, WIN-55,212-2 treatment of cells resulted in a dose-dependent increase in Bax/Bcl-2 ratio in such a way that favors apoptosis. The induction of apoptosis proceeded through down-regulation of caspases 3, 6, 7, and 9 and cleavage of poly (ADP-ribose) polymerases. Based on these data we suggest that cannabinoid receptor agonists should be considered as novel agents for the management of prostate cancer.  相似文献   

11.
SHP-2, a tyrosine phosphatase implicated in diverse signaling pathways induced by growth factors and cytokines, is also involved in DNA damage-triggered signaling and cellular responses. We previously demonstrated that SHP-2 played an important role in DNA damage-induced apoptosis and G2/M cell cycle checkpoint. In the present studies, we have provided evidence that SHP-2 functions in DNA damage apoptosis and G2/M arrest in catalytically dependent and independent manners, respectively. Mutant embryonic fibroblasts with the Exon 3 deletion mutation in SHP-2 showed decreased apoptosis and diminished G2/M arrest in response to cisplatin treatment. Wild type (WT), but not catalytically inactive mutant SHP-2 (SHP-2 C459S), rescued the apoptotic response of the mutant cells. Interestingly, both WT and SHP-2 C459S efficiently restored the G2/M arrest response. Furthermore, inhibition of the catalytic activity of endogenous SHP-2 in WT cells by overexpression of SHP-2 C459S greatly decreased cell death but not G2/M arrest induced by cisplatin. Biochemical analyses revealed that activation of c-Abl kinase was decreased in SHP-2 C459S-overexpressing cells. However, DNA damage-induced translocation of Cdc25C from the nucleus to the cytoplasm was fully restored in both WT and SHP-2 C459S "rescued" cells. Additionally, we demonstrated that the role of SHP-2 in DNA damage-induced cellular responses was independent of the tumor suppressor p53. Embryonic stem cells with the SHP-2 deletion mutation showed markedly decreased sensitivity to cisplatin-induced apoptosis, attributed to impaired induction of p73 but not p53. In agreement with these results, DNA damage-induced apoptosis and G2/M arrest were also decreased in SHP-2/p53 double mutant embryonic fibroblasts. Collectively, these studies have further defined the mechanisms by which SHP-2 phosphatase regulates DNA damage responses.  相似文献   

12.
13.
Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).  相似文献   

14.
Choi EJ  Kim T  Lee MS 《Life sciences》2007,80(15):1403-1408
We investigated the effects of genistein and genistin on proliferation and apoptosis of human ovarian SK-OV-3 cells and explored the mechanism for these effects. SK-OV-3 cells were treated with genistein and genistin at various concentrations (ranging from 1 to 100 muM) either alone or in combination for 24 and 48 h. Cell proliferation was estimated using an MTT assay, and cell cycle arrest was evaluated using FACS. Caspase-3 activity and annexin-based cell cycle analysis were used as measures of apoptosis. In addition, genistein- and genistin-induced cytotoxicity was determined by measuring release of LDH. Genistein treatment for 24 or 48 h substantially inhibited SK-OV-3 cell proliferation in a dose-dependent manner, and genistin treatment for 48 h also inhibited cell proliferation. Genistein caused cell cycle arrest at G2/M phase in dose- and time-dependent manner, and genistin caused cell cycle arrest not only at G2/M phase but also at G1 phase. Genistein markedly induced apoptosis and significantly increased LDH release, whereas genistin did not affect LDH release. Moreover, exposure to both genistein and genistin in combination for 48 h induced apoptosis without increasing LDH release. Genistein and genistin inhibit cell proliferation by disrupting the cell cycle, which is strongly associated with the arrest induction of either G1 or G2/M phase and may induce apoptosis. Based on our findings, we speculate that both genistein and genistin may prove useful as anticancer drugs and that the combination of genistein and genistin may have further anticancer activity.  相似文献   

15.
In this study, we have developed a novel method to identify isothiocyanate (ITC)-targeted molecules using two well-studied ITCs: benzyl ITC (BITC) and phenethyl ITC (PEITC). The principle of this method is based on identifying a pattern of differences between BITC and PEITC given that they show similar chemical and biological behaviors. For method validation, dithiothreitol-reduced bovine insulin as a model molecule was incubated with either BITC or PEITC, and digested peptides were analyzed by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and liquid chromatography quadrupole TOF-MS (LC-Q-TOF-MS). Three peptides-NYCN, FVNQHLCGSHLVE, and ALYLVCGE-were identified as being adducted with BITC or PEITC on their cysteine residues. Each set of peptides adducted with either BITC or PEITC showed retention times (RT(BITC)相似文献   

16.
Reoviruses and the host cell   总被引:13,自引:0,他引:13  
  相似文献   

17.
Zhang Y 《Mutation research》2004,555(1-2):173-190
Numerous studies in rodents have documented the cancer-preventive activity of a significant number of isothiocyanates (ITCs), the majority of which occur in plants, especially in cruciferous vegetables. Dietary ITCs may play an important role in the prevention of human cancers. Several recent epidemiological studies have already shown that dietary consumption of ITCs inversely correlates with the risk of developing lung, breast and colon cancers. ITCs are principally metabolized through the mercapturic acid pathway in vivo, giving rise to N-acetylcysteine conjugates, which are excreted in the urine. Analytical methods have been developed to allow detection of ITCs and their metabolites formed in the mercapturic acid pathway. Studies show that total urinary level of ITC equivalent is an excellent biomarker of human exposure to ITCs. Moreover, these methods also have made it possible to learn the bioavailability of ITCs from cruciferous vegetables. ITCs possess multiple anticarcinogenic mechanisms, including inhibition of carcinogen-activating enzymes, induction of carcinogen-detoxifying enzymes, increase of apoptosis, arrest of cell cycle progression, as well as several other mechanisms that are not yet fully described. These mechanisms, which are discussed in detail in this review, illustrate the remarkable ability of ITCs to inhibit cancer development-effective against both developing and developed cancer cells.  相似文献   

18.
We previously demonstrated the protective effect of inducible heat shock protein 70 (Hsp70) against gamma radiation. Herein, we extend our studies on the possible role of Hsp70 to ionizing radiation-induced cell cycle regulation. The growth rate of inducible hsp70-transfected cells was 2-3 hours slower than that of control cells. Flow cytometric analysis of cells at G1 phase synchronized by serum starvation also showed the growth delay in the Hsp70-overexpressing cells. In addition, reduced cyclin D1 and Cdc2 levels and increased dephosphorylated phosphoretinoblastoma (pRb) were observed in inducible hsp70-transfected cells, which were probably responsible for the reduction of cell growth. To find out if inducible Hsp70-mediated growth delay affected radiation-induced cell cycle regulation, flow cytometric and molecular analyses of cell cycle regulatory proteins and their kinase were performed. The radiation-induced G2/M arrest was found to be inhibited by Hsp70 overexpression and reduced p21Waf induction and its kinase activity by radiation in the Hsp70-transfected cells. In addition, radiation-induced cyclin A or B1 expressions together with their kinase activities were also inhibited by inducible Hsp70, which represented reduced mitotic cell death. Indeed, hsp70 transfectants showed less induction of radiation-induced apoptosis. When treated with nocodazole, radiation-induced mitotic arrest was inhibited by inducible Hsp70. These results strongly suggested that inducible Hsp70 modified growth delay (increased G1 phase) and reduced G2/M phase arrest, subsequently resulting in inhibition of radiation-induced cell death.  相似文献   

19.
Multiple signal transduction pathways are capable of modifying BCL-2 family members to reset susceptibility to apoptosis. We used two-dimensional peptide mapping and sequencing to identify three residues (Ser70, Ser87, and Thr69) within the unstructured loop of BCL-2 that were phosphorylated in response to microtubule-damaging agents, which also arrest cells at G(2)/M. Changing these sites to alanine conferred more antiapoptotic activity on BCL-2 following physiologic death signals as well as paclitaxel, indicating that phosphorylation is inactivating. An examination of cycling cells enriched by elutriation for distinct phases of the cell cycle revealed that BCL-2 was phosphorylated at the G(2)/M phase of the cell cycle. G(2)/M-phase cells proved more susceptible to death signals, and phosphorylation of BCL-2 appeared to be responsible, as a Ser70Ala substitution restored resistance to apoptosis. We noted that ASK1 and JNK1 were normally activated at G(2)/M phase, and JNK was capable of phosphorylating BCL-2. Expression of a series of wild-type and dominant-negative kinases indicated an ASK1/Jun N-terminal protein kinase 1 (JNK1) pathway phosphorylated BCL-2 in vivo. Moreover, the combination of dominant negative ASK1, (dnASK1), dnMKK7, and dnJNK1 inhibited paclitaxel-induced BCL-2 phosphorylation. Thus, stress response kinases phosphorylate BCL-2 during cell cycle progression as a normal physiologic process to inactivate BCL-2 at G(2)/M.  相似文献   

20.

Background

We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells).

Results

MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells.

Conclusion

Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号