首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The region of Bacillus stearothermophilus strain NCA 1503 23-S ribosomal RNA protected from T1 ribonuclease digestion by the 50-S ribosomal subunit protein L1 from Escherichia coli has been established. The sequence of 115 nucleotides is compared to the analogous region in E. coli. The similar behaviour of the RNA towards the recognition of protein L1 may be explained in terms of secondary base-pairing, even though there exists almost 40% difference between the primary nucleotide sequences.  相似文献   

2.
E J Gren 《Biochimie》1984,66(1):1-29
The structural aspects of recognition by E. coli ribosomes of translational initiation regions on homologous messenger RNAs have been reviewed. Also discussed is the location of initiation region on mRNA, its confines, typical nucleotide sequences responsible for initiation signal, and the influence of RNA macrostructure on protein synthesis initiation. Most of the published DNA nucleotide sequences surrounding the start of various E. coli genes and those of its phages have been collected.  相似文献   

3.
Palindromic units (PUs) are intergenic repeated sequences scattered over the chromosomes of Escherichia coli and several other enterobacteria. In the latter, IS1397, an E. coli insertion sequence specific to PUs, transposes into PUs with sequences close to the E. coli consensus. Reasons for this insertion specificity can relate to either a direct recognition of the target (by its sequence or its structure) by the transposase or an interaction between a specific host protein and the PU target DNA sequence. In this study, we show that for Yersinia pestis, a species deprived of PUs, IS1397 can transpose onto its chromosome, with transpositional hot spots. Our results are in favor of a direct recognition of target DNA by IS1397 transposase.  相似文献   

4.
The espA, espB and espD genes from enteropathogenic Escherichia coli were previously shown to be essential for triggering the signal transduction in infected host cells. We have cloned and determined the nucleotide sequences of the espA, espB and espD homologues from an E. coli strain (4221) isolated from a dog which manifested the attaching and effacing lesions in the small intestine. This strain is designated as a dog enteropathogenic E. coli. When comparing predicted amino acid sequences to those of the corresponding proteins from enteropathogenic E. coli O127, enterohemorrhagic E. coli serotype O26, enterohemorrhagic E. coli O157 and rabbit enteropathogenic E. coli, the EspADEPEC protein showed the same level of similarity (75% identity) with EspA of enteropathogenic E. coli O127 and rabbit enteropathogenic E. coli. The EspBDEPEC protein showed the highest similarity with the EspB of enteropathogenic E. coli O127 (99% identity). The EspDDEPEC protein showed 88% identity with the EspDEPEC. We constructed and purified a maltose-binding fusion protein containing the product of the entire espBDEPEC gene of the dog enteropathogenic E. coli strain 4221. Purified maltose-binding protein-EspBDEPEC fusion protein was shown to bind efficiently to HEp-2 cells in a localized fashion as shown by immunofluorescence microscopy. In addition, when the dog enteropathogenic E. coli strain 4221 was grown in tissue culture medium (DMEM) supplemented with serum, a secreted 36-kDa protein was identified by immunoblot analysis using a polyclonal antiserum against the maltose-binding protein-EspBDEPEC fusion protein.  相似文献   

5.
6.
7.
In vivo excision and amplification of large segments of a genome offer an alternative to heterologous DNA cloning. By obtaining predetermined fragments of the chromosome directly from the original organism, the problems of clone stability and clone identification are alleviated. This approach involves the insertion of two recognition sequences for a site-specific recombinase into the genome at predetermined sites, 50-100 kb apart. The integration of these sequences, together with a conditional replication origin (ori), is targeted by homologous recombination. The strain carrying the insertions is stably maintained until, upon induction of specifically engineered genes, the host cell expresses the site-specific recombinase and an ori-specific replication protein. The recombinase then excises and circularizes the genomic segment flanked by the two insertions. This excised DNA, which contains ori, is amplified with the aid of the replication protein and can be isolated as a large plasmid. The feasibility of such an approach is demonstrated here for E. coli. Using the yeast FLP/FRT site-specific recombination system and the pi/gamma-ori replication initiation of plasmid R6K, we have devised a procedure that should allow the isolation of virtually any segment of the E. coli genome. This was shown by excising, amplifying and isolating the 51-kb lacZ--phoB and the 110-kb dapX--dsdC region of the E. coli MG1655 genome.  相似文献   

8.
We developed a new method for the specific mutagenization of the E. coli chromosome. This method takes advantage of the fact that a pBR322 plasmid containing chromosomal sequences is mobilizable during an Hfr-mediated conjugational transfer, due to an homologous recombination between the E. coli Hfr chromosome and the pBR322 derivative. Transconjugants are screened with a simple selection procedure for integration of mutant sequences in the chromosome and loss of pBR322 sequences. Using this method we specifically inactivated several genes near the E. coli replication origin oriC. We found that a gene coding for asparagine synthetase A. This regulatory mechanism was investigated in detail by determining in vivo regulation of asnA promoter activity by the 17kD protein under different growth conditions. Results obtained also suggest a general regulatory role of the 17kD protein in E. coli asparagine metabolism. Therefore the 17kD gene is proposed to be renamed asnC.  相似文献   

9.
A virulent phage, named PP01, specific for Escherichia coli O157:H7 was isolated from swine stool sample. The phage concentration in a swine stool, estimated by plaque assay on E. coli O157:H7 EDL933, was 4.2x10(7) plaque-forming units per g sample. PP01 infects strains of E. coli O157:H7 but does not infect E. coli strains of other O-serogroups and K-12 strains. Infection of an E. coli O157:H7 culture with PP01 at a multiplicity of infection of two produced a drastic decrease of the optical density at 600 nm due to cell lysis. The further incubation of the culture for 7 h produced phage-resistant E. coli O157:H7 mutant. One PP01-resistant E. coli O157:H7 mutant had lost the major outer membrane protein OmpC. Complementation by ompC from a O157:H7 strain but not from a K-12 strain resulted in the restoration of PP01 susceptibility suggesting that the OmpC protein serves as the PP01 receptor. DNA sequences and homology analysis of two tail fiber genes, 37 and 38, responsible for the host cell recognition revealed that PP01 is a member of the T-even bacteriophages, especially the T2 family.  相似文献   

10.
11.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

12.
M Shirai  R Fujinaga  J K Akada  T Nakazawa 《Gene》1999,239(2):351-359
We constructed and analyzed hybrid Escherichia coli-Helicobacter pylori rpoD genes in an E. coli rpoD mutant. It turned out that a hybrid consisting of E. coli rpoD with subdomain 4.2 of H. pylori rpoD (for -35 recognition) was functional. On the other hand, hybrids consisting of E. coli rpoD with domain 2 and the adjacent sequence of H. pylori rpoD (for core enzyme binding and -10 recognition) were non-functional. Intriguingly, a hybrid rpoD containing H. pylori subdomain 4.2 conferred higher activity for the H. pylori PureA as determined by xylE expression of PureA-xylE fusions, although the activity of the hybrid rpoD for the tac promoter was comparable to that of E. coli rpoD. The tsp of ureA in E. coli with the hybrid rpoD and E. coli rpoD were 15 and 17bp upstream from that in H. pylori, respectively. The comparison of PureA sequences in both E. coli and H. pylori indicated the existence of a -10 consensus sequence but little conservation of -35 sequences. Instead, the PureA in both H. pylori and E. coli contained an identical heptamer, GTTAATA, in the extended -35 region.  相似文献   

13.
Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during sec-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the "mature" portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells.  相似文献   

14.
15.
Nucleotide sequences in two wild-type and six mutant operators in the DNA of phage λ are compared. Strikingly similar 17 base pair units are found which we identify as the repressor binding sites. Each operator contains multiple repressor binding sites separated by A-T rich spacers. Elements of 2 fold rotational symmetry are present in each of the sites. Superimposed on each operator is an E. coli RNA polymerase recognition site (promoter). Similarities in the sequences of the two λ promoters, a lac promoter, and an E. coli RNA polymerase recognition site in SV40 DNA are noted.  相似文献   

16.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

17.
The aroC genes from Salmonella typhi and Escherichia coli, encoding 5-enolpyruvylshikimate-3-phosphate phospholyase (chorismate synthase) were cloned in E. coli and their DNA sequences were determined. The aroC gene from S. typhi was isolated from a cosmid gene bank by complementation of an E. coli aroC mutant. The corresponding E. coli gene was isolated from a pBR322 gene bank by colony hybridization using DNA encoding the aroC gene from S. typhi as a hybridization probe. Analysis of the nucleotide sequence revealed that both genes have an open reading frame capable of encoding proteins comprising 361 amino acids. The calculated molecular mass of the protein from S. typhi is 39,108 Da while that of the protein from E. coli is 39,138 Da. Homology is particularly strong between the coding regions of the genes: 95% when protein sequences are compared, and 83% when DNA sequences are examined. Use of a deletion variant of the E. coli aroC gene demonstrates that the C-terminal 36 amino acids are not essential for the correct folding or functional activity of the chorismate synthase enzyme.  相似文献   

18.
The B. subtilis alpha-amylase promoter and signal peptide are functional in E. coli cells. DNA fragments coding for signal peptides with different lengths (28, 31, 33 and 41 amino acids from the translation initiator Met) were prepared and fused with the E. coli beta-lactamase structural gene. In B. subtilis cells, the sequences of 31, 33 and 41 amino acids were able to secrete beta-lactamase into the surrounding media, but the 28 amino acid sequence was not. In contrast, all of the four sequences were able to export beta-lactamase into the periplasmic space of E. coli cells. Thus, the recognition of the B. subtilis alpha-amylase signal peptide in E. coli cells seems to be different from that in B. subtilis cells.  相似文献   

19.
The complete nucleotide sequences of the Salmonella typhimurium LT2 and Shigella flexneri 2B crp genes were determined and compared with those of the Escherichia coli K-12 crp gene. The Shigella flexneri gene was almost like the E. coli crp gene, with only four silent base pair changes. The S. typhimurium and E. coli crp genes presented a higher degree of divergence in their nucleotide sequence with 77 changes, but the corresponding amino acid sequences presented only one amino acid difference. The nucleotide sequences of the crp genes diverged to the same extent as in the other genes, trp, ompA, metJ, and araC, which are structural or regulatory genes. An analysis of the amino acid divergence, however, revealed that the catabolite gene activator protein, the crp gene product, is the most conserved protein observed so far. Comparison of codon usage in S. typhimurium and E. coli for all genes sequenced in both organisms showed that their patterns were similar. Comparison of the regulatory regions of the S. typhimurium and E. coli crp genes showed that the most conserved sequences were those known to be essential for the expression of E. coli crp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号