首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary From one plant of soybean (Glycine max (L.) Merr.) with only two one-seeded pods, found in an F4 population maintained by single-seed descent procedure, two fully fertile plants were obtained which, in turn, produced two progeny segregating for male sterility. Segregation ratios, observed on progeny from fertile plants in three successive generations, indicated that the male-sterility trait was under the control of a single recessive gene. Cytological observations made on malesterile, female-fertile plants showed the occurrence of a complete and properly timed cytokinesis with the formation of tetrad cells whose size was very variable, one of which sometimes had two nuclei. During pollen maturation binucleate microspores and grains with reduced size (micropollens) were frequently observed. Massive pollen degeneration occurred at a rather later stage. Structural evidence points to a normally functioning tapetum.On the basis of these cytological observations we conclude that the abnormalities observed in the mutant we studied have to be considered to be different from those caused by any other known ms allele. Tests of allelism with other sources of male sterility are in progress.  相似文献   

2.
 The entire Em-like Group-1 late embryogenesis abundant (Lea) gene family from soybean was cloned and characterized. The five Group-1 Lea genes (Sle1-5) were divided into two classes based on sequence identity. Sle1-4 were genetically mapped to four different linkage groups. Nucleotide sequencing indicated that Sle1, Sle2, Sle3, and Sle5 encode polypeptides differing primarily by the presence of a repeated 20-amino acid motif. Sle1 and Sle5 were shown by Northern analysis to be expressed in developing embryos weeks earlier than Sle2 and Sle3. Sle4 was shown to be a pseudogene. Maximal levels of mRNA for all functional Sle genes accumulated in maturation-phase seeds, before significant desiccation had occurred, and declined rapidly upon seed imbibition. Desiccation did not induce Sle expression in seeds or vegetative tissue. Sle expression was confined to embryo tissues and Sle mRNA accumulated at similar levels in both the embryo axis and in the cotyledons. Received: 25 September 1996 / Accepted: 27 September 1996  相似文献   

3.
 We used thirty simple sequence repeats (SSRs) with a variable 2–4 base ‘anchor’ at their 5′ ends (ASSRs) independently or with arbitrary primers in analysis of soybean germplasm and the intercross of ‘Essex’ and PI 437654. (AG)6, (GA)6 or (CT)6 and (GT)6, (TG)6 or (CA)6 were efficient in the detection of (G-A) and (C-A) ASSR-generated polymorphisms, respectively. DNA sequence analysis of the ASSR-amplified fragments confirmed the presence of SSR sequences. (A-T) ASSRs failed to give amplification or generated fewer number of fragments. Only one of the four tested decamer primers altered ASSR banding patterns in the soybean. All the six long primers (18–20 mer) tested changed ASSR banding profiles. On average, seven polymorphic fragments per ASSR primer were produced in soybean germplasm and four in the intraspecific cross of ‘Essex’ and PI 437654. The grouping of 48 genotypes in UPGMA analysis using four (C-A) and four (G-A) ASSR primers was consistent with the classification obtained with RFLP markers. Seventy-seven (91%) ASSR markers were dominant, while the remaining 8 (9%) showed codominant segregation. Fifty-eight ASSR markers were mapped onto 18 RAPD/RFLP linkage groups, which covered approximately 50% of the soybean genome. Of the (G-A) ASSR-derived markers 49% remained unlinked compared with 17% of (C-A) ASSR markers at LOD 3.0. Map linkage information showed that the assigned (C-A) polymorphisms had a biased distribution, whereas (G-A) polymorphisms were randomly dispersed. Received: 24 July 1997 / Accepted: 17 November 1997  相似文献   

4.
In higher plants, asparagine synthetase (AS) plays an important role in regulating the nitrogen sink-source relationship. We studied the expression of AS genes in five Chinese soybean cultivars exhibiting contrasting seed protein contents. We found that only the AS2 but not the AS1 gene was induced by dark treatment. On the other hand, the expression of AS1 in leaves (especially in trifoliate leaves of young seedlings) showed a positive correlation with seed protein contents in the soybean cultivars tested. Therefore, in spite of the fact that the principle transporting compounds in soybean plants for nitrogen acquired via symbiotic fixation are ureides, AS may still play an important role in the process of nitrogen assimilation.  相似文献   

5.
Summary The photosynthetic cell suspension culture of soybean [Glycine max (L.) Merr. cv. Corsoy] (SB-M) was successfully cryopreserved in liquid nitrogen using a preculture and controlled freezing to −40° C (two-step) freezing method. The effective method included a preculture treatment with gradually increasing levels of sorbitol added to the 3% sucrose already present in the medium. The cells were then placed in a cryoprotectant solution [10% DMSO (dimethylsulfoxide) and 9.1% sorbitol, or 10% DMSO and 8% sucrose], incubated for 30 min at 0° C, cooled at a rate of 1° C/min to −40° C, held at −40° C for 1 h, and then immersed directly into liquid nitrogen. The cells were thawed at 40° C and then immediately placed in liquid culture medium. The cell viabilities immediately after thawing were 75% or higher in all cases where cell growth resumed. The original growth rate and chlorophyll level of the cells was recovered within 40 to 47 d. If the sorbitol level was not high enough or the preculture period too short, growing cultures could not be recovered. Likewise, survival was not attained with cryoprotectant mixtures consisting of 15% DMSO, 15% glycerol, and 9.1% sucrose or 15% glycerol and 8% sucrose. The successful method was reproducible, thus allowing long-term storage of this and certain other unique photosynthetic suspension cultures in liquid nitrogen.  相似文献   

6.
Summary A molecular marker analysis of a near-isogenic line (NIL), its donor parent (DP), and its recurrent parent (RP) can provide information about linkages between molecular markers and a conventional marker introgressed into the NIL. If the DP and RP possess different alleles for a given molecular marker, and if the NIL possesses the same allele as the DP, then it is reasonable to presume a linkage between that molecular marker and the introgressed marker. In this study, we examined the utility of RFLPs as molecular markers for the NIL genemapping approach. The allelic status of fifteen RFLP loci was determined in 116 soybean RP/NIL/DP line sets; 66 of the Clark RP type and 50 of the Harosoy RP type. Of the 1740 possible allelic comparisons (116 NILs x 15 RFLP loci), 1638 were tested and 462 (33.9%) of those were informative (i.e., the RP and DP had different RFLP alleles). In 15 (3.2%) of these 462 cases the NIL possessed the DP-derived RFLP allele, leading to a presumption of linkage between the RFLP locus and the introgressed conventional marker locus. Two presumptive linkages, pK-3 — and pK-472 — Lf i, were subsequently confirmed by cosegregation linkage analysis. Although not yet confirmed, two other associations, pk-7 ab and pK-229 — y 9 seemed to be plausible linkages, primarily because the pk-7 — ab association was detected in two independently derived NILs and both markers of the pK-229 — y 9 association were known to be linked to Pb. The data obtained in this investigation indicated that RFLP loci were useful molecular markers for the NIL gene-mapping technique.Published as Paper no. 9101, Journal Series, Nebraska Agric. Res. Div. Project no. 12-091. Research partially funded by a grant from the Nebraska Soybean Development, Utilization, and Marketing Board  相似文献   

7.
8.
Imazapyr is a herbicidal molecule that concentrates in the apical meristematic region of the plant. Its mechanism of action is the inhibition of the enzymatic activity of acetohydroxyacid synthase, which catalyses the initial step in the biosynthesis of isoleucine, leucine and valine. The selectable marker gene, ahas, was previously isolated from Arabidopsis thaliana and contains a mutation at position 653 bp. Combining the use of imazapyr, the ahas gene and a multiple shooting induction protocol has allowed us to develop a novel system to select transgenic meristematic cells after the physical introduction of foreign genes. In this study, we describe a protocol to obtain a high frequency of fertile transgenic soybean plants that is variety-independent. Received: 14 June 1999 / Accepted: 8 October 1999  相似文献   

9.
Summary The seasonal and diurnal variations in nitrate reductase (NR) activity of field grown Altona soybean, with and without applied nitrogen, were determined. The NR activity in the fortnightly collected leaf samples was, on the average, 20 percent higher throughout the season in N-treated plants, the highest being early in the season and declining gradually in the samples of subsequent dates. Diurnal variations were marked by increase in the NR activity from 7 a.m. to 7 p.m. and then declining gradually to a minimum at 7 a.m. the next morning.  相似文献   

10.
Random amplified polymorphic DNA (RAPD) is based on DNA amplification by polymerase chain reaction (PCR) of random DNA segments using single arbitrary nucleotide sequences. We have adapted the assay to soybeans by using Stoffel Fragment DNA polymerase and by optimizing the reaction conditions. To increase the percentage of RAPD polymorphisms, the DNA template was digested with restriction enzymes before amplification. The combination of twenty-four primers and five DNA template treatments (Undigested, DraI, EcoRI, HindIII, and TaqI digested) revealed 94 polymorphic DNA fragments differing between soybean lines PI437654 and BSR101. Many polymorphic DNA bands were found unreliable or non-scoreable after re-screening of primers and verification of marker-allele segregation with 20 recombinant inbred lines (RILs). However, 28 RAPD markers were consistently polymorphic between the parental lines and followed Mendelian expectations. The use of DNA templates digested with DraI, EcoRI, HindIII or TaqI increased three times the number of RAPD markers compared to undigested DNA template alone. The 28 RAPD markers obtained were further screened with 72 RILs and placed on an existing RFLP map.  相似文献   

11.
Two DNA fragments, a 730-bp and a 900-bp fragment, one homologous to host cultivar specificity genes nolBT of Sinorhizobium fredii and the other one homologous to RSalpha, an insertion-like sequence present in Bradyrhizobium japonicum, were generated by polymerase chain reaction (PCR) with two pairs of primers. The amount of each fragment generated by the multiplex PCR was proportional to the amount of template DNA present. The amplification of the 900-bp RSalpha fragment was more sensitive, since it was amplified from a smaller amount of template DNA than the 730-bp nolBT fragment. By running the multiplex reaction in the presence of template DNA isolated from different sources, we confirmed that the reaction can discriminate between S. fredii, Bradyrhizobium japonicum and Sinorhizobium xinjiangensis.  相似文献   

12.
Summary A colchicine-doubled F1 hybrid (2n=118) of a cross between PI 360841 (Glycine max) (2n=40) x PI 378708 (G. tomentella) (2n=78), propagated by shoot cuttings since January 1984, produced approximately 100 F2 seed during October 1988. One-fourth of the F2 plants or their F3 progeny have been analyzed for chromosome number, pollen viability, pubescence tip morphology, seed coat color, and isoenzyme variation. Without exception, all plants evaluated possessed the chromosome number of the G. max parent (2n=40). Most F2 plants demonstrated a high level of fertility, although 2 of 24 plants had low pollen viability and had large numbers of fleshy pods. One F2 plant possessed sharp pubescence tip morphology, whereas all others were blunt-tipped. All evaluated F2 and F3 plants expressed the malate dehydrogenase and diaphorase isoenzyme patterns of the G. max parent and the endopeptidase isoenzyme pattern of the G. tomentella parent. Mobility variants were observed among progeny for the isoenzymes phosphoglucomutase, aconitase, and phosphoglucoisomerase. This study suggests that the G. Tomentella chromosome complement has been eliminated after genetic exchange and/or modification has taken place between the genomes.Journal Paper No. J-13776 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA, USA, Project 2763  相似文献   

13.
Quantitative trait values for seed oil and protein content or for maturity were measured in recombinant inbred lines (RIL) of soybean derived from a cross between two soybean cultivars: Minsoy PI 27890 and Noir 1 PI 290136. Seed oil was found to be inversely correlated to protein content. By analyzing DNA from plants with extreme phenotypes, we were able to identify quantitative trait loci (QTL) for these traits as being linked to several restriction fragment length polymorphism (RFLP) loci, including R183 for oil and protein content and R79 for maturity. Cumulative distributions of trait values were graphed for those RIL with Minsoy alleles and for those with Noir 1 alleles. As already suggested by the alleles found associated with extreme phenotypes, the distributions were consistent with an independent and additive expression of the maturity QTL linked to R79. That is, the cumulative distributions for plants with Minsoy alleles and for plants with Noir 1 alleles were similar in shape, but the entire Noir 1 curve had been shifted to later maturity dates. In contrast, the trait distributions for a locus affecting oil and protein content linked to R183 were not compatible with an additive model. These results suggest that this approach can be used for rapid identification of QTLs with epistatic expression.  相似文献   

14.

Background

Soybean is one of the most economically important crops in the world. The cotyledon is the nutrient storage area in seeds, and it is critical for seed quality and yield. Cotyledon mutants are important for the genetic dissection of embryo patterning and seed development. However, the molecular mechanisms underlying soybean cotyledon development are largely unexplored.

Results

In this study, we characterised a soybean curled-cotyledon (cco) mutant. Compared with wild-type (WT), anatomical analysis revealed that the cco cotyledons at the torpedo stage became more slender and grew outward. The entire embryos of cco mutant resembled the “tail of swallow”. In addition, cco seeds displayed reduced germination rate and gibberellic acid (GA3) level, whereas the abscisic acid (ABA) and auxin (IAA) levels were increased. RNA-seq identified 1,093 differentially expressed genes (DEGs) between WT and the cco mutant. The KEGG pathway analysis showed many DEGs were mapped to the hormone biosynthesis and signal transduction pathways. Consistent with assays of hormones in seeds, the results of RNA-seq indicated auxin and ABA biosynthesis and signal transduction in cco were more active than in WT, while an early step in GA biosynthesis was blocked, as well as conversion rate of inactive GAs to bioactive GAs in GA signaling. Furthermore, genes participated in other hormone biosynthesis and signalling pathways such as cytokinin (CK), ethylene (ET), brassinosteroid (BR), and jasmonate acid (JA) were also affected in the cco mutant.

Conclusions

Our data suggest that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in cco, and changes in these pathways may partially contribute to the cco mutant phenotype, suggesting the involvement of multiple hormones in the coordination of soybean cotyledon development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-510) contains supplementary material, which is available to authorized users.  相似文献   

15.
Wu C  Ma Q  Yam KM  Cheung MY  Xu Y  Han T  Lam HM  Chong K 《Planta》2006,223(4):725-735
Soybean is a short-day plant and its flowering process can be reversed when switching from short-day to long-day conditions. Flowering reversion provides a useful system to study the flowering process in both forward and backward directions. In this study, we optimized a soybean flowering reversion system using a photoperiod-sensitive cultivar Zigongdongdou. Three types of terminal structures were found during flowering reversion: reversed terminal raceme (RTR), short terminal raceme (STR), and vegetative terminal (VT). The relative frequency of these terminal structures during flowering reversion under long day was dependent on the duration of the prior short day (SD) pretreatment. This process is phytochrome dependent and young plants were more susceptible to flowering reversion. Leaf removal increased the minimal SD period needed for the induction of STR. To demonstrate the application of this system, we studied the patterns of in situ expression of the GmNMH7 gene during flowering development and reversion. NMH7 family members encode MADS-box proteins and are unique in legume families since their expression can be detected in both developing flowers and nodules. In situ hybridization experiments using plants grown under different photoperiod cycles provided several lines of evidence supporting a close relationship between GmNMH7 gene expression and floral development in soybean. Furthermore, it seems that GmNMH7 may participate in flower development at different stages. Interestingly, the expression pattern of GmNMH7 in root nodules was also found to be regulated by photoperiod. These results support the notion that the photoperiod sensitive GmNMH7 gene may play multiple roles in growth and development in soybean.C. Wu and Q. Ma contributed equally to this work.  相似文献   

16.
Crop leaves are subject to continually changing light levels in the field. Photosynthetic efficiency of a crop canopy and productivity will depend significantly on how quickly a leaf can acclimate to a change. One measure of speed of response is the rate of photosynthesis increase toward its steady state on transition from low to high light. This rate was measured for seven genotypes of soybean [Glycine max (L.) Merr.]. After 10 min of illumination, cultivar ‘UA4805’ (UA) had achieved a leaf photosynthetic rate (Pn) of 23.2 μmol · m?2 · s?1, close to its steady‐state rate, while the slowest cultivar ‘Tachinagaha’ (Tc) had only reached 13.0 μmol · m?2 · s?1 and was still many minutes from obtaining steady state. This difference was further investigated by examining induction at a range of carbon dioxide concentrations. Applying a biochemical model of limitations to photosynthesis to the responses of Pn to intercellular CO2 concentration (Ci), it was found that the speed of apparent in vivo activation of ribulose‐1:5‐bisphosphate carboxylase/oxygenase (Rubisco) was responsible for this difference. Sequence analysis of the Rubisco activase gene revealed single nucleotide polymorphisms that could relate to this difference. The results show a potential route for selection of cultivars with increased photosynthetic efficiency in fluctuating light.  相似文献   

17.
Studies were conducted with 9 to 12 day-old soybean (Glycine max [L.] Merr. cv. Williams) seedlings to determine the contribution of roots to whole plant NO(3) (-) reduction. Using an in vivo -NO(3) (-) nitrate reductase (NR) assay (no exogenous NO(3) (-) added to incubation medium) developed for roots, the roots accounted for approximately 30% of whole plant nitrate reductase activity (NRA) of plants grown on 15 mm NO(3) (-).Nitrogen analyses of xylem exudate showed that 53 to 66% of the total-N was as reduced-N, depending on the time of day of exudate collection. These observations supported enzyme data that suggested roots were contributing significantly to whole plant NO(3) (-) reduction. In short-term feeding studies using (15)N-NO(3) (-) significant and increasing atom percent (15)N excess was found in the reduced-N fraction of xylem exudate at 1.5 and 3 hours after feeding, respectively, which verified that roots were capable of reducing NO(3) (-).Estimated reduced-N accumulation by plants based on in vivo -NO(3) (-) NR assays of all plant parts substantially over-estimated actual reduced-N accumulation by the plants. Thus, the in vivo NR assay cannot be used to accurately estimate reduced-N accumulation but still serves as a useful assay for relative differences in treatment conditions.  相似文献   

18.
Genistein, as a plant-to-bacteria signal, plays an importantrole in the establishment of the soybean (Glycine max [L.] Merr.)-Bradyrhizobiumjaponicum nitrogen-fixing symbiosis. It is essential to thedevelopment of effective root nodules and responsible for inducingthe nod genes of B. japonicum. Because sub-optimal root zonetemperature (RZT) delays infection and early nodule development,and decreases plant nodule number, and genistein addition overcomessome of this, it is reasonable to hypothesize that suboptimalRZT disrupts the inter-organismal signal exchange by inhibitinggenistein synthesis. Four experiments were conducted to testthese hypotheses. The results of these studies indicated that:(1) when soybean plants were germinated and maintained at RZTsranging from 13 to 17C, root genistein concentration and contentper plant were lower than those of plants with roots maintainedat RZTs above 17C; (2) when plants were germinated at an optimalRZT (25 C) then transferred to RZTs below 17C, and acclimatedfor a few days, root genistein concentration and content perplant were higher than those of plants with roots maintainedeither at optimal RZT, or transferred to RZT above 17 C, althoughby the end of the experiment, the genistein concentration ofroot systems at below 17C RZT appeared to be declining to valuesbelow those of plants with above 17 C RZT; (3) the root genisteinconcentration increased before the onset of nitrogen fixationand decreased thereafter; and (4) part of the effect of RZTson genistein content per plant root system was from reductionsin genistein concentration at lower RZT5, and part was due todecreased plant root growth. Key words: Genistein, Glycine max, suboptimal temperature  相似文献   

19.
Molecular characterization and genetic diversity among 82 soybean accessions was carried out by using 44 simple sequence repeat (SSR) markers. Of the 44 SSR markers used, 40 markers were found polymorphic among 82 soybean accessions. These 40 polymorphic markers produced a total of 119 alleles, of which five were unique alleles and four alleles were rare. The allele number for each SSR locus varied between two to four with an average of 2.97 alleles per marker. Polymorphic information content values of SSRs ranged from 0.101 to 0.742 with an average of 0.477. Jaccard’s similarity coefficient was employed to study the molecular diversity of 82 soybean accessions. The pairwise genetic similarity among 82 soybean accessions varied from 0.28 to 0.90. The dendrogram constructed based on genetic similarities among 82 soybean accessions identified three major clusters. The majority of genotypes including four improved cultivars were grouped in a single subcluster IIIa of cluster III, indicating high genetic resemblance among soybean germplasm collection in India.

Electronic supplementary material

The online version of this article (doi:10.1007/s12298-014-0266-y) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号