首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the quantification of nitrite and nitrate, the stable metabolites of -arginine-derived nitric oxide (NO) in human urine and plasma, we developed a gas chromatographic—mass spectrometric (GC—MS) method in which [15N]nitrite and [15N]nitrate were used as internal standards. Endogenous nitrite and [15N]nitrite added to acetone-treated plasma and urine samples were converted into their pentafluorobenzyl (PFB) derivatives using PFB bromide as the alkylating agent. For the analysis of endogenous nitrate and [15N]nitrate they were reduced to nitrite and [15N]nitrite, respectively, by cadmium in acidified plasma and urine samples prior to PFB alkylation. Reaction products were extracted with toluene and 1-μl aliquots were analyzed by selected-ion monitoring at m/z 46 for endogenous nitrite (nitrate) and m/z 47 for [15N]nitrite ([15N]nitrate). The intra- and inter-assay relative standard deviations for the determination of nitrite and nitrate in urine and plasma were below 3.8%. The detection limit of the method was 22 fmol of nitrite. Healthy subjects (n = 12) excreted into urine 0.49 ± 0.25 of nitrite and 109.5 ± 61.7 of nitrate (mean ± S.D., μmol/mmol creatinine) with a mean 24-h output of 5.7 μmol for nitrite and 1226 μmol for nitrate. The concentrations of nitrite and nitrate in the plasma of these volunteers were determined to be (mean ± S.D., μmol/l) 3.6 ± 0.8 and 68 ± 17, respectively.  相似文献   

2.
We developed a simple capillary electrophoresis (CE) method to measure nitrite and nitrate concentrations in sub-microliter samples of rat airway surface liquid (ASL), a thin (10–30 μm) layer of liquid covering the epithelial cells lining the airways of the lung. The composition of ASL has been poorly defined, in large part because of the small sample volume (1–3 μl per cm2 of epithelium) and difficulty of harvesting ASL. We have used capillary tubes for ASL sample collection, with microanalysis by CE using a 50 mM phosphate buffer (pH 3), with 0.5 mM spermine as a dynamic flow modifier, and direct UV detection at 214 nm. The limit of detections (LODs), under conditions used, for ASL analysis were 10 μM for nitrate and 30 μM for nitrite (S/N=3). Nitrate and nitrite were also measured in rat plasma. The concentration of nitrate was 102±12 μM in rat ASL and 70±1.0 μM in rat plasma, whereas nitrite was 83±28 μM in rat ASL and below the LOD in rat plasma. After instilling lipopolysaccharide intratracheally to induce increased NO production, the nitrate concentration in ASL increased to 387±16 μM, and to 377±88 μM in plasma. The concentration of nitrite increased to 103±7.0 μM for ASL and 138±17 μM for plasma.  相似文献   

3.
All photometric or HPLC methods described to date have been unable to detect nitrite, a reliable marker of NO synthase activity, in human blood because of its rapid metabolism within the erythrocytes. We now elaborate on method to prevent nitrite degradation during sample preparation which in combination with high-performance anion-exchange chromatography and electrochemical detection allows a sensitive measurement of nitrite. A linear current response in the concentration range of 10–1000 nmol/l nitrite was observed yielding a correlation coefficient of 0.99. In addition, the combination of the electrochemical with a UV detector allowed us to simultaneously quantify nitrate one analytical run, which is the end product of NO/nitrite metabolism. Basal levels for nitrate and nitrite in human blood were determined with 25±4 μmol/l and 578±116 nmol/l (n=8), respectively and thus were in the same concentration range as expected from NO measurement in saline perfused isolated organs or cultured endothelial cells. Therefore, the presented method may be used to assess activity of endothelial constitutive NO synthase in humans under physiological and pathophysiological conditions.  相似文献   

4.
A simple, rapid, accurate and sensitive method is proposed for the simultaneous determination of nitrite and nitrate in human saliva. Nitrite and nitrate present in the human saliva were determined after 10- to 100-fold dilution with ion chromatography (IC) using suppressed conductivity detection. Recoveries of nitrite and nitrate were found to be ranged between 95% and 101%. The method was linear (r2=0.9991) over the concentration working range. The detection limits were found to be 15.0 μg/l and 33.5 μg/l, for nitrite and nitrate, respectively. Ions that are present in human saliva and several other ions that are suspected to affect nitrite and nitrate determination were checked. It was found that most of the ions did not cause any interference in the determination. The method allows simultaneous determination of nitrite and nitrate in human saliva.  相似文献   

5.
A capillary zone electrophoresis method for the separation and analysis of nitrate and nitrite in water and urine was developed. No interference in the electropherogram from other anions is observed by using a polyacrylamide-coated column with a modified phosphate buffer at pH 3 for the separation, and UV absorption at 214 nm for the detection. The method does not require sample pretreatment or the use of organic solvents. The limit of detection for each analyte (S/N = 3), using a 75 μm I.D. capillary, is 0.5 μg/ml. Urine samples require 40-fold dilution in order to maintain migration time reproducibility to within 1% relative standard deviation.  相似文献   

6.
A method for the simultaneous determination of the three selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, paroxetine and their metabolites in whole blood and plasma was developed. Sample clean-up and separation were achieved using a solid-phase extraction method with C8 non-endcapped columns followed by reversed-phase high-performance liquid chromatography with fluorescence and ultraviolet detection. The robustness of the solid-phase extraction method was tested for citalopram, fluoxetine, paroxetine, Cl-citalopram and the internal standard, protriptyline, using a fractional factorial design with nine factors at two levels. The fractional factorial design showed two significant effects for paroxetine in whole blood. The robustness testing for citalopram, fluoxetine, Cl-citalopram and the internal standard revealed no significant main effects in whole blood and plasma. The optimization and the robustness of the high-performance liquid chromatographic separation were investigated with regard to pH and relative amount of acetonitrile in the mobile phase by a central composite design circumscribed. No alteration in the elution order and no significant change in resolution for a deviation of ±1% acetonitrile and ±0.3 pH units from the specified conditions were observed. The method was validated for the concentration range 0.050–5.0 μmol/l with fluorescence detection and 0.12–5.0 μmol/l with ultraviolet detection. The limits of quantitation were 0.025 μmol/l for citalopram and paroxetine, 0.050 μmol/l for desmethyl citalopram, di-desmethyl citalopram and citalopram-N-oxide, 0.12 μmol/l for the paroxetine metabolites by fluorescence detection, and 0.10 μmol/l for fluoxetine and norfluoxetine by ultraviolet detection. Relative standard deviations for the within-day and between-day precision were in the ranges 1.4–10.6% and 3.1–20.3%, respectively. Recoveries were in the 63–114% range for citalopram, fluoxetine and paroxetine, and in the 38–95% range for the metabolites. The method has been used for the analysis of whole blood and plasma samples from SSRI-exposed patients and forensic cases.  相似文献   

7.
Methylhippuric acid isomers (MHAs), urinary metabolites of xylenes, were determined, after clean-up by C18-SPE and esterification with hexafluoroisopropanol and diisopropylcarbodiimide, by GC with ECD detection, on an SPB-35 capillary column (30 m, 0.32 mm I.D., 0.25 μm film thickness, β=320). S-benzyl-mercapturic acid was used for internal standardization. Chromatographic conditions were: oven temperature 162°C, for 14.2 min; ramp by 30°C/min to 190°C, for 3.5 min; ramp by 30°C/min to 250°C, for 4 min; helium flow rate: 1.7 ml/min; detector and injector temperature: 300°C. The sample (1 μl) was injected with a split injection technique (split ratio 5:1). MHA recovery was >95% in the 0.5–20 μmol/l range; the limit of detection was <0.25 μmol/l; day-to-day precision, at 2 μmol/l, was Cv<10%. Urinary MHAs were determined in subjects exposed to different low-level sources of xylenes: (a) tobacco smoking habit and (b) BTX urban air pollution (airborne xylene ranging from 0.1 to 3.7 μmol/m3). Study (a) showed a significant difference between urinary MHA median excretion values of nonsmokers and smokers (4.6 μmol/l vs. 8.1 μmol/l, p<0.001). Study (b) revealed a significant difference between indoor workers and outdoor workers (4.3 μmol/l vs. 6.9 μmol/l, p<0.001), and evidenced a relationship between MHAs (y, μmol/mmol creatinine) and airborne xylene (x, μmol/m3) (y=0.085+0.34x; r=0.82, p<0.001, n=56). Proposed biomarkers could represent reliable tools to study very low-level exposure to aromatic hydrocarbons such as those observed in the urban pollution due to vehicular traffic or in indoor air quality evaluation.  相似文献   

8.
The detection and quantitation of slight increases of plasma homocysteine levels is of growing interest. This has prompted us to develop a highly sensitive and accurate capillary gas chromatography–mass spectrometry (GC–MS) method. The method proved to be highly sensitive (DL=0.17 μmol/l) with between- and within-run precision less than 6% and 7%, respectively. Reference values of plasma total homocysteine have been determined for men (n=39) and women (n=36), showing a significant difference (P=0.003) between gender. Preliminary results in cerebrovascular accidents and in venous thrombosis are presented.  相似文献   

9.
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.  相似文献   

10.
A high-performance liquid chromatographic (HPLC) procedure for lamotrigine was developed and validated. Lamotrigine (LTG) and an internal standard were extracted from plasma using liquid–liquid extraction under alkaline conditions into an organic solvent. The method was linear in the range 0.78–46.95 μmol/l, with a mean coefficient of correlation (r)≥0.99923. The limit of detection (LOD) and limit of quantification (LOQ) were 0.19 and 0.58 μmol/l, respectively. Within- and between-run precision studies demonstrated C.V.<3% at all tested concentrations. LTG median recovery was 86.14%. Antiepileptic drugs tested did not interfere with the assay. The method showed to be appropriate for monitoring LTG in plasma samples.  相似文献   

11.
We have modified a high-performance liquid chromatographic (HPLC) procedure based on SBD-F (ammonium-7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate) pre-column derivatization to obtain an assay that is useful for routine clinical total plasma homocysteine (tHcy) analysis. The introduction of easily handled sodium borohydride instead of the traditional tri-n-butylphosphine in dimethylformamide as a reductant and a 14-min run-time using basic isocratic HPLC equipment are the more notable advantages. The addition of mercaptopropionylglycine as an internal standard contributed to improvements in the reproducibility of the assay, yielding within- and between-run precisions of 1.9 and 4% (C.V.), respectively. Reference values for fasting tHcy were 7.65±2.3 and 8.9±2.4 μmol/l, while post-methionine load gave tHcy levels of 19.9±5.5 and 26.8±5.5 μmol/l, for women and men, respectively (n=40).  相似文献   

12.
Plasma phenobarbital (PB) concentrations in rat offspring were determined using a 9 μl capillary by high-performance liquid chromatography (HPLC). Capillary plasma which was put into a Bond Elut® cartridge column by using 1 ml of 0.01 M KH2PO4 was applied to the column with 50 μl of 2 μg/ml of acetanilide (internal standard, I.S.). After washing the column, PB and I.S. were eluted with methanol and injected into the HPLC system. There were excellent linear correlation between the amount of PB and length of the capillary at three different concentrations. Calibration for PB was linear in the range of 0–50 μg/ml. The coefficients of variation were 3.4–5.0% and 5.9–7.5% in the within-day and between-day assays, respectively. The extraction recovery rates were 87.5–105.4%. By this method, it was possible to measure plasma PB concentrations in rat offspring without killing. These results suggested that this method is very useful to determine the plasma PB concentration derived from mother’s milk in newborn rats.  相似文献   

13.
Automated procedures for the determination of CGP 33 101 in plasma and the simultaneous determination of CGP 33 101 and its carboxylic acid metabolite, CGP 47 292, in urine are described. Plasma was diluted with water and urine with a pH 2 buffer prior to extraction. The compounds were automatically extracted on reversed-phase extraction columns and injected onto an HPLC system by the automatic sample preparation with extraction columns (ASPEC) automate. A Supelcosil LC-18 (5 μm) column was used for chromatography. The mobile phase was a mixture of an aqueous solution of potassium dihydrogen phosphate, acetonitrile and methanol for the assay in plasma, and of an aqueous solution of tetrabutylammonium hydrogen sulfate, tripotassium phosphate and phosphoric acid and of acetonitrile for the assay in urine. The compounds were detected at 230 nm. The limit of quantitation was 0.11 μml/l (25 ng/mol) for the assay of CGP 33 101 in plasma, 11 μmol/l (2.5 μg/ml) for its assay in urine and 21 μmol/l (5 μg/ml) for the assay of CGP 47 292 in urine.  相似文献   

14.
Measurement of nitrite and nitrate, the stable oxidation products of nitric oxide (NO), provides a useful tool to study NO synthesis in vivo and in cell cultures. A simple and rapid fluorometric HPLC method was developed for determination of nitrite through its derivatization with 2,3-diaminonaphthalene (DAN). Nitrite, in standard solution, cell culture medium, or biological samples, readily reacted with DAN under acidic conditions to yield the highly fluorescent 2,3-naphthotriazole (NAT). For analysis of nitrate, it was converted to nitrite by nitrate reductase, followed by the derivatization of nitrite with DAN to form NAT. NAT was separated on a 5-μm reversed-phase C8 column (150×4.6 mm, I.D.) guarded by a 40-μm reversed-phase C18 column (50×4.6 mm, I.D.), and eluted with 15 mM sodium phosphate buffer (pH 7.5) containing 50% methanol (flow-rate, 1.3 ml/min). Fluorescence was monitored with excitation at 375 nm and emission at 415 nm. Mean retention time for NAT was 4.4 min. The fluorescence intensity of NAT was linear with nitrite or nitrate concentrations ranging from 12.5 to 2000 nM in water, cell culture media, plasma and urine. The detection limit for nitrite and nitrate was 10 pmol/ml. Because NAT is well separated from DAN and other fluorescent components present in biological samples, our HPLC method offers the advantages of high sensitivity and specificity as well as easy automation for quantifying picomole levels of nitrite and nitrate in cell culture medium and biological samples.  相似文献   

15.
Capillary electrophoresis (CE) with laser-induced fluorescence detection was applied to quantify daunorubicin and daunorubicinol in plasma. Separation was carried out in a 47 cm×50 μm I.D. fused-silica capillary, with a running buffer, pH 5 containing 60 μM spermine and 70% acetonitrile. Sample preparation was done either by protein precipitation with acetonitrile or by liquid–liquid extraction. The assay can be applied in a concentration range from 40 mg/l down to 2 μg/l for daunorubicin and from 1 mg/l to 2 μg/l for daunorubicinol. Precision and accuracy were between 2.9 and 14.5% (n=6) on 1 day and between 1.0 and 14.7% from day to day (n=6) for both analytes. Thus, the CE method enables precise and accurate quantification of daunorubicin and daunorubicinol in small sample volumes over a wide concentration range.  相似文献   

16.
An isocratic high-performance liquid chromatographic method for the determination of 5-methyltetrahydrofolate (5-MTHF) in human plasma is described. The method involves solid-phase extraction of 5-MTHF and p-aminoacetophenon (an internal standard) using Sep-Pak C18 cartridges. Separation was achieved with an ODS column using acetonitrile and phosphate buffer supplemented with octanesulfonic acid (an ion-pairing agent). The pH of the mobile phase (2.5) was optimal with respect to the mode of detection (fluorescence). The method was validated in the range of 5-MTHF concentrations from 0.0625 μmol/l to 4.0 μmol/l. Within-day and inter-day precision expressed by the relative standard deviation was less than 8.1% and inaccuracy did not exceed 8.7%. The method is specific, accurate and sensitive enough to be used in pharmacokinetic studies for the assessment of the systemic availability of 5-MTHF after leucovorin administration to patients as a rescue after high-dose therapy with methotrexate. The limit of detection was 0.17 pmol which corresponds to a plasma concentration of 1.7 nmol/l. Thus, the assay could potentially be used for the measurement of 5-MTHF in the range of physiological concentrations in plasma (5–20 nmol/l).  相似文献   

17.
We have developed a rapid and sensitive GC–MS assay for methylmalonic acid determination in serum and plasma utilizing an anion exchange solid-phase extraction and trimethylsilyl derivatization. Each step of the procedure was optimized by the experimental design methods to assure the assay reliable performance. The limit of detection and limit of quantitation were 0.025 and 0.1 μmol/l. The total coefficient of variation for the method was 9.8, 4.4, and 4.6% at the concentration of 0.2, 3.1, and 6.2 μmol/l methylmalonic acid concentration, respectively. The assay are linear up to 9.0 μmol/l, and showed good correlation with a reference method. The method has proven to be reliable in routine production, producing clean chromatography, unique ion fragments, and consistent ion mass ratio.  相似文献   

18.
The metabolic oxidation of one of the chloroethyl groups of the antitumour drug ifosfamide leads to the formation of the inactive metabolites 2- and 3-dechloroethylifosfamide together with the neurotoxic metabolite chloroacetaldehyde. A very sensitive capillary gas chromatographic method, requiring only 50 μl of plasma or urine, has been developed to measure the amounts of the drug and the two inactive metabolites in a single run. Calibration curves were linear (r > 0.999) in the concentration ranges from 50 ng/ml to 100 μg/ml in plasma and from 100 ng/ml to 1 mg/ml in urine.  相似文献   

19.
A high-performance liquid chromatographic (HPLC) method with ultraviolet detection for the determination of quinine in rat biological fluids is described. Due to its selectivity and sensitivity, the proposed method can be used in the case of such rat biological fluids as cerebrospinal fluid (CSF) and perilymph for which the accessible volumes are limited to 100 μl and 10 μl, respectively. Consequently, the assay method has been applied to the measurements of quinine concentration in rat plasma, CSF and perilymph samples.  相似文献   

20.
A simultaneous assay for droperidol and flunitrazepam by high-performance liquid chromatography has been developed and applied to blood samples collected during an acute normovolemic haemodilution under general anaesthesia. Haemodilution blood samples were stored at +4°C to be transfused, if required, to a patient during the post-surgical phase. A C18 Supelclean cartridge was used for solid-phase extraction, and the recoveries were 74% and 89%, respectively, for droperidol and flunitrazepam. Compounds were chromatographed on a C18 Novapak column at 250 nm, with a mobile phase of acetonitrile—10 mM ammonium acetate buffer (pH 6.7) (45:55, v/v). Nitrazepam was used as the internal standard. For both drugs, the assay was linear up to 500 μg/l, and the detection limits were 20 and 10 μg/l for droperidol and flunitrazepam, respectively, and their observed levels in haemodilution samples were 93 ± 82 μg/l and 76 ± 107 μg/l, respectively. Some of the values for flunitrazepam were higher than the minimal efficient concentration, defined as the plasma level observed at the time of the patient wakening from anaesthesia (12 ± 4 μg/l). According to our results, haemodilution sampling can be performed before induction of anaesthesia. When the blood is collected after the anaesthetic induction, it seems necessary to determine levels of the two drugs in haemodilution samples to avoid side-effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号