首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.  相似文献   

2.
The fluorescence properties of dissolved organic matter (DOM) in the water of Lake Fuxian and its adjacent rivers on the Yunnan Plateau, southwestern China, were studied to specify the characterization of DOM in the lake and river waters. The fluorescence properties with the excitation–emission matrix in the water of Lake Fuxian are different from those in the river water. The differences in these properties between the lake and river water could arise not only from their sources but also from the reactivity of the photobleaching of DOM. In the lake, the supplying of allochthonous fluorescent materials from inflowing rivers to the fluorescent DOM is less significant than the photobleaching of fluorescent substances.  相似文献   

3.
水溶性有机质对土壤中镉吸附行为的影响   总被引:67,自引:7,他引:67  
水溶性有机质 (DOM)是陆地生态系统和水生生态系统中的一种很活跃的组分 .本文以赤红壤、水稻土和褐土作为供试土壤 ,研究了来源于稻秆和底泥的DOM对土壤中Cd吸附行为的影响 .DOM对土壤中Cd的吸附行为具有明显的抑制作用 .这种抑制作用与土壤类型和DOM种类有关 .在 3种供试土壤中 ,无论添加稻秆DOM还是底泥DOM ,都会使Cd的最大吸附容量和吸附率明显降低 ,其下降幅度为17 3%~ 93 9%.在添加同一种DOM的前提下 ,DOM对Cd吸附的抑制作用均为 :赤红壤 >水稻土 >褐土 .如果不添加DOM ,则土壤对Cd的最大吸附容量主要取决于土壤固相的吸附特性 ,添加DOM后土壤对Cd的最大吸附容量则主要取决于液相中的DOM .由此推断 ,传统的看法 ,通过施用有机肥来固定土壤中的Cd并达到治理重金属污染土壤的观点值得商榷 .  相似文献   

4.
Abstract Microbial transformation of labile, low molecular weight dissolved organic matter (DOM) into dissolved humic matter (DHM) was studied in seawater. Surface water samples were amended with [14C into 14CO2, TO14C (total organic 14C), and PO14C (particulate organic 14C), was measured over time in confined samples. The humic and non-humic fractions of DO14C (dissolved organic 14C) were separated according to a common operational definition of DHM based on adsorption on XAD-8 macroporous resin. Both TO14C and non-humic DO14C decreased during the experiments. However, 14C-labelled DHM increased during the first week of the incubations, to a level where it comprised 15% of the TO14C remaining in the samples, or 3% of the initially added 14C. Towards the end of experiments (ca 70 days), the humic fraction of DO14C gradually approached the background level of poisoned control samples. Provided that the XAD-8 operational definition of DHM is accepted, this study indicates that humic matter may be formed in seawater within days from labile monomers such as glucose.  相似文献   

5.
Quantitative and qualitative characterizations of dissolved organic matter (DOM) were carried out at the watershed level in central Japan by measuring dissolved organic carbon (DOC) concentration and the three-dimensional excitation–emission matrix (3-D EEM). DOC concentration was low (mean 37 ± 19 µM C) in the upstream waters, whereas, in general, it increased toward the downstream areas (mean 92 ± 47 µM C). Significant variations in DOC concentration were detected among rivers and channels. DOC concentration in the epilimnion of Lake Biwa increased during the summer period and decreased during the winter period. The lake hypolimnion has lower DOC concentration (mean 87 ± 7 µM C) compared with the epilimnion (107 ± 15 µM C). Fulvic acid (FA)-like substances in the DOM were directly characterized by 3-D EEM. The fluorescence peak for upstream DOM was found in regions with longer wavelengths (excitation/emission 386 ± 6/476 ± 5 nm) compared with downstream and lake DOM (351 ± 12/446 ± 15 nm and 341 ± 6/434 ± 6 nm, respectively). The DOC concentration is correlated with fluorescence peak intensity of FA-like substances in DOM in river waters. Such a relationship was not found in lake DOM. A blueshift of the fluorescence peak from upstream to lake DOM was observed. A decrease in fluorescence intensities was also detected during the summer period. These results may suggest that the degradation of FA-like substances in DOM occurs from natural solar irradiation. Protein-like fluorescence was significantly detected in the lake epilimnion during the summer period. A linear relationship between DOC concentration and protein-like fluorescence indicated that an autochthonous input of DOM gave rise to the increase in DOC concentration in the lake epilimnion during the summer. These results may suggest that the 3-D EEM can be used as a tool for the investigation of DOM dynamics at the watershed level with concurrent measurement of DOC concentration and the fluorescence properties of fulvic acid-like and protein-like substances.  相似文献   

6.
Absorption measurements from chromophoric dissolved organic matter (CDOM) and their relationships with dissolved organic carbon (DOC) and fluorescence were studied in Lake Taihu, a large, shallow, subtropical lake in China. Absorption spectra of lake water samples were measured from 240 nm to 800 nm. Highest values of a(λ), DOC and F n (355) occurred near the river inflow to Meiliang Bay and decreased towards the central lake basin. A significant spatial difference was found between Meiliang Bay and the central lake basin in absorption coefficient, DOC-specific absorption coefficient, exponential slope coefficient, DOC concentration and fluorescence value. The spatial distribution of CDOM suggested that a major part of CDOM in the lake was from river input. CDOM absorption coefficients were correlated with DOC over the wavelength range 280–500 nm, and a(355) was also correlated with F n (355), which showed that CDOM absorption could be inferred from DOC and fluorescence measurement. The coefficient of variation between a(λ) and DOC concentration decreased with increase in wavelength from 240 nm to 800 nm. Furthermore, a significant negative linear relationship was recorded between S value and CDOM absorption coefficient, as well as DOC-specific absorption coefficient. S value and DOC-specific absorption coefficient were used as a proxy for CDOM composition and source. Accurate CDOM absorption measurements are very useful in explaining UV attenuation and in developing, validating remote sensing model of water quality in Lake Taihu.  相似文献   

7.
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC−1 m−1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derived DOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p < 0.05, R 2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by a change in the proportion of bioavailable DOC.  相似文献   

8.
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation–emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic carbon (BDOC) incubations to investigate the chemical quality of DOM in soil water collected from 25 cm piezometers in four different wetland and forest soils: bog, forested wetland, fen and upland forest. There were significant differences in soil solution concentrations of dissolved organic C, N, and P, DOC:DON ratios, SUVA254 and BDOC among the four soil types. Throughout the sampling period, average DOC concentrations in the four soil types ranged from 9–32 mg C l−1 and between 23–42% of the DOC was biodegradable. Seasonal patterns in dissolved nutrient concentrations and BDOC were observed in the three wetland types suggesting strong biotic controls over DOM concentrations in wetland soils. PARAFAC modeling of excitation–emission fluorescence spectroscopy showed that protein-like fluorescence was positively correlated (r 2 = 0.82; P < 0.001) with BDOC for all soil types taken together. This finding indicates that PARAFAC modeling may substantially improve the ability to predict BDOC in natural environments. Coincident measurements of DOM concentrations, BDOC and PARAFAC modeling confirmed that the four soil types contain DOM with distinct chemical properties and have unique fluorescent fingerprints. DOM inputs to streams from the four soil types therefore have the potential to alter stream biogeochemical processes differently by influencing temporal patterns in stream heterotrophic productivity.  相似文献   

9.
Distributions of molecular size and fluorescence properties of dissolved organic matter (DOM) in the Lake Biwa and Lake Baikal watersheds were investigated using the cross-flow ultrafiltration technique and three-dimensional fluorescence measurements. From the fluorescence properties, protein-like substances were usually found in the 0.1 μm-GF/F fraction (the Durapore membrane retentate of the GF/F filtrate) of the lake DOM. The results indicated autochthonous production of protein-like organic-matters in the lake environment. Fulvic acid (FA)-like components were composed of two fractions with respect to fluorescence properties and molecular size. Two FA-like fluorescence peaks, which showed different fluorescence peak positions in the excitation-emission matrix (EEM), were partly fractionated by the molecular size of 5000 daltons (5 kDa). The FA-like fluorescence peak position of the <5-kDa fraction was observed at the shorter wavelength region compared with that of the fraction between 5 kDa and 0.1 μm (5 kDa20.1 μm fraction). A blue shift of the FA-like fluorescence peak position as well as a decrease in the molecular size of the DOM was observed in lake samples. The relative contribution of the <5 kDa fraction to the DOC concentration was high in lake waters (68%–79%) compared with river waters (44%–68%), suggesting characteristic changes in molecular size between riverine and lacustrine DOM. DOM of the 5 kDa–0.1 μm fraction was relatively higher in river waters than in lake waters. These findings coincided with in situ distributions of the fluorescence properties and molecular size of DOM found in both stream and lake environments. These results indicate that FA-like substances from forested watersheds are decomposed qualitatively and quantitatively in the river-lake environment by photochemical and biological processes.  相似文献   

10.
陆地生态系统中水溶性有机物动态及其环境学意义   总被引:30,自引:3,他引:30  
王艮梅  周立祥 《应用生态学报》2003,14(11):2019-2025
水溶性有机物(DOM)是陆地生态系统中最活跃的有机碳库,也是土壤圈层与相关圈层进行物质与能量交换的重要表现形式,它对重金属、养分元素和有机污染物的活化、迁移与生态毒性有较大影响,在农业土壤溶液中DOM浓度通常在10~80mgC·L-1,湿地土壤中多数在25~50mgC·L-1,与森林土壤剖面淋滤水中的DOM相近,但在某些微域土壤环境(如根际和有机肥施用点附近)中DOM浓度可高达200~1000mgC·L-1,不同来源的DOM在土壤中的迁移性与降解性明显不同,含低分子量组分或亲水性组分较多的DOM不易被土壤吸持而易被微生物降解,pH值相对较高的土壤(如石灰性土壤)对DOM吸附较弱,但pH较低和含有大量氧化物的土壤(如红壤、赤红壤和砖红壤等)则对DOM的吸附较强,施用石灰、土壤淹水或干湿交替、温度升高等有利于土壤保持较高的DOM浓度,由于DOM-金属配合物的形成,DOM能明显促进土壤重金属活化和向下迁移,而且DOM中低分子量或亲水性组分所占比例越低活化作用越强,同样地,由于DOM具有两亲性质,也能明显提高疏水性有机污染物(如农药和持久难降解有机污染物)的水溶性,增加其对环境污染的风险,特别是含疏水性组分越多的DOM这种作用越强.可以认为,继续加强有关DOM在陆地生态系统中产生与消长规律,特别是DOM及其与污染物的配合物从陆地生态系统向水体迁移的机理及其通量的研究,对合理预测污染物的环境行为和科学地进行环境风险评估有重要意义。  相似文献   

11.
Dissolved organic matter (DOM) in seawater can be defined as the fraction of organic matter that passes through a filter of sub micron pore size. In this study, we have examined the effect of DOM of deep seawater (DSW) from Pacific Ocean on platelet aggregation and atherosclerosis progression. DSW was passed through a series of filters and then through an Octadecyl C18 filter; the retained substance in ethanol was designated as C18 extractable DOM (C18-DOM). Our studies showed that C18-DOM treatment inhibited platelet aggregation, P-selectin expression and activity of COX-1 significantly. C18-DOM increased the expression of anti-atherogenic molecule namely heme oxygenase-1 in endothelial cells and all these data showed that C18-DOM is exhibiting aspirin-like effects. Moreover our in vivo studies showed that C18-DOM feeding slowed remarkably the progression of atherosclerosis. Our study demonstrated a novel biological effect of oceanic DOM, which has several important implications, including a possible therapeutic strategy for atherosclerosis.  相似文献   

12.
袁博  郭梦京  郑兴  周孝德 《生态学杂志》2018,29(11):3773-3782
溶解性有机质是水体中有机质分解与营养盐再生的核心载体之一,是碳、氮等生源要素生物地球化学循环的重要环节,也是水环境科学研究的重点内容.本研究应用液相-有机碳-有机氮检测(LC-OCD-OND)技术研究了西安市灞河流域水体中溶解性有机质(DOM)不同分子量组分特征,分析其与河水水质的相关性.结果表明: 河水DOM按照分子量分布,主要由生物大分子、腐殖质类物质、腐殖质降解产物、低分子中性物质和低分子酸组成,各组分平均浓度分别为0.15、1.75、0.48、0.36和0.002 mg·L-1,河水中DOM总体含量水平由高到低的顺序为城市河段>城镇河段>源区河段.组分中分子量介于1000~20000 Da的腐殖质类物质占DOM总量的49.0%,含量及丰度从高到低依次为中游城镇段>污水厂出口段>污水厂下游河口段>上游源头段;分子量>20000 Da的生物大分子约占DOM总量的5.1%,丰度由高到低依次为污水厂出口>污水厂下游河口>上游源头>中游城镇段,污水处理厂出水所产生的外生源有机质对河流DOM的贡献最大.DOM不同分子量组分与水质的相关性明显,表明基于LC-OCD-OND分级表征的DOM各分子量组分和丰度不仅可以作为水质监测的一个综合性指标,也可以用来表征河流水质的空间异质性,并能对污染物各组分进行定量化判别和来源解析.  相似文献   

13.
Complexation between Hg(II) and dissolved organic matter (DOM) collected from streams in Ontario, Canada, was studied using three-dimensional excitation emission matrix (3DEEM) fluorescence spectroscopy. The results show that DOM reacted with Hg(II) rapidly, and the complexation reached pseudo-equilibrium within 20 s. Maximum excitation/emission (Ex/Em) wavelengths shifted towards the longer wavelengths, indicating that DOM structure changed during its interaction with Hg(II). Using fluorescence quenching titrations, complexing parameters, conditional stability constants and the percentage of fluorophores participating in the complexation, were estimated by the modified Stern–Volmer equation. The experimental and field survey results suggest that the Hg–DOM complexation in various streams was related to water quality parameters, e.g. DOC, Cl–, and cation concentrations, and was strongly affected by UV irradiation.  相似文献   

14.
This study investigated the properties and sorption by goethite of bulk (unfractionated) dissolved organic matter (DOM) from surface and shallow groundwaters at McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). Water samples were collected in the spring and fall seasons from two surface-water sampling sites, an upstream potential recharge area and a downstream discharge area, as well as from a set of in-stream nested wells in the upstream potential recharge area. Changes in DOM concentration, molecular weight distribution, and molar absorptivity at 280 nm were measured. Surface and shallow (1.6 m below land surface) groundwater samples collected in spring 1997 in the potential recharge zone (actual recharge impeded by an extensive clay lens) were found to be very similar in terms of DOM concentrations and physicochemical properties and is believe to originate from a common source. Samples taken in fall 1997 yielded no surface water because of drought conditions, and the shallow groundwater DOM collected from the recharge well contained significantly less and chemically altered DOM. This change in chemical properties is believed to be caused in part by fractionation resulting from sorption to mineral phases. Batch isotherm experiments show that sorption by goethite of the DOM from both spring surface and shallow groundwaters in the potential recharge area were similar, whereas the fall groundwater possessed a much lower affinity for the sorbent. This study demonstrated that shallow groundwaters collected under different climatic and hydrologic conditions (spring, high flow versus fall, drought conditions) resulted in different physicochemical properties and adsorption affinities.  相似文献   

15.
The dissolved organic carbon (DOC) concentrations in mesotrophic Lake Biwa were determined by a total organic carbon (TOC) analyzer, and DOC molecular size distributions were determined by size exclusion chromatography (SEC) using a fluorescence detector at excitation/emission (Ex/Em) levels of 300/425 nm with the eluent at pH 9.7. The fluorescence wavelengths for detection were chosen from the result of excitation–emission matrix spectrometry (EEM) analysis for dissolved fulvic acid (DFA) extracted from Ado River (peak A, Ex/Em = 260–270/430–440 nm; peak B, Ex/Em = 300–310/420–430 nm). Ado River DFA was eluted with a retention time (RT) of 7.4–8.9 min and the apparent molecular weight was estimated at 22–87 kDa based on the elution curve for the spherical protein molecular weight standard. A DFA peak eluted at the same retention time as Ado River DFA also appeared in all the samples of Lake Biwa water. From the linear relationship between the peak areas with an RT of 7.4–8.9 min by SEC analysis and DOC values of DFA by TOC analysis of a series of DFA samples (r2 = 0.9995), the concentrations of DFA in the lake water were roughly calculated. DFA was distributed within the range 0.25–0.43 mg C l−1 and accounted for 15%–41% of DOC, with the highest ratios observed at a depth of 70 m in August and the lowest at 2.5 m in May.  相似文献   

16.
土壤溶解性有机质的特性与环境意义   总被引:34,自引:4,他引:34  
土壤生态环境是一个复杂的多介质多界面体系,尽管关于土壤溶解性有机质 研究还不完善,但现有的研究表明,它是这一环境中最为活跃的化学组成之一。由于土壤溶解性有机质在C、N、P和S等营养元素的生物地球化学过程、成土过程、微生物的生长代谢过程、土壤有南分解和转化过程以及土壤污染物的迁移过程有着重要的作用,因此已成为土壤科学、生态科学和环境科学交叉领域的研究热点,本文从土壤溶解性有机质的提取方法、来源、组成、含量和影响因素、生物有效性及环境意义等方面的研究进展作了简要的论述,同时提出了未来的研究方向。  相似文献   

17.
溶解性有机质对土壤中有机污染物环境行为的影响   总被引:28,自引:4,他引:28  
土壤中溶解性有机质(DOM)是生物活性和物理化学反应活性都很活跃的有机组分,主要通过疏水吸附、分配、氢键、电荷转移、共价键、范德华力等多种作用与有机污染物结合,提高溶液中有机污染物的溶解度,改变土壤中有机污染物的吸附-解吸、迁移-转化等环境行为.DOM对有机污染物的吸附-解吸、迁移-转化过程的影响有双重性:一方面,DOM与有机污染物在土壤表面的共吸附可增加土壤对有机污染物的吸附容量,促进有机污染物在土壤中的吸持;另一方面,DOM对有机污染物的增溶作用,有利于土壤中有机污染物的解吸,提高移动性.作为光敏剂,DOM能提高土壤中有机物的光解反应速率.在一定条件下,DOM也可影响土壤中有机污染物的水解过程.DOM对土壤中有机污染物环境行为的影响与DOM和有机污染物的性质及其相互作用的介质条件密切相关.  相似文献   

18.
The net production of dissolved organic matter (DOM) and dissolved combined and free amino acids (DCAA and DFAA, respectively) by the hermatypic coral Acropora pulchra was measured in the submerged condition, and the production rates were normalized to the coral surface area, tissue biomass, and net photosynthetic rates by zooxanthellae. When normalized to the unit surface area, the production rates of dissolved organic carbon and nitrogen (DOC and DON, respectively) were 37 and 4.4 nmol cm− 2 h− 1, respectively. Comparing with the photosynthetic rate by zooxanthellae, which was measured by 13C-tracer accumulation in the soft tissue of the coral colony, the release rate of DOC corresponded to 5.4% of the daily net photosynthetic production. The tissue biomass of the coral colony was 178 µmol C cm− 2 and 23 µmol N cm− 2, indicating that the release of DOC and DON accounted for 0.021% h− 1 and 0.019% h− 1 of the tissue C and N, respectively. The C:N ratios of the released DOM (average 8.4) were not significantly different from those of the soft tissue of the coral colonies (average 7.7). While DFAA did almost not accumulate in the incubated seawater, DCAA was considerably released by the coral colonies at the rate of 2.1 nmol cm− 2 h− 1 on average. Calculating C and N contents of the hydrolyzable DCAA, it was revealed that about 20% and 50%–60% of the released bulk DOC and DON, respectively, were composed of DCAA.  相似文献   

19.
Absorptions by non-phytoplankton particles and phytoplankton, and chromophoric dissolved organic matter (CDOM) were measured at 50 sites in large, shallow, Lake Taihu in winter and summer 2006 to study their seasonal and spatial variations, and their relative contributions to total absorption. The CDOM absorption was significantly higher in winter than in summer, due to degradation and release of fixed carbon in phytoplankton and submerged aquatic vegetation (SAV). The hyperbolic model was used to model the spectral absorption of CDOM, and the mean spectral slope of 6.38 nm−1 was obtained. At most sites, the spectral absorption of non-phytoplankton particles was similar to that of the total particles, demonstrating that the absorption of the total particles is dominated by the absorption of non-phytoplankton particles. In summer, phytoplankton absorption increased markedly, due to frequent algal blooms especially in Meiliang Bay. In winter, the significant increase in non-phytoplankton particle absorption resulted from the increase of inorganic particulate matter caused by sediment resuspension. Strong linear relationships were found between a d(440) and total suspended matter (TSM), organic suspended matter (OSM), and inorganic suspended matter (ISM). Strong linear relationships were also found between a ph(440), a ph(675) and chlorophyll a (Chl-a) concentration. The total relative contributions of non-phytoplankton particles over the range of photosynthetically active radiation (PAR) (400–700 nm) were 48.4 and 79.9% in summer and winter respectively. Non-phytoplankton particle absorption dominated the total absorption, especially in winter, in Lake Taihu, due to frequent sediment resuspension in the large shallow lake as a result of strong windy conditions. The results indicate that strong absorption by CDOM and non-phytoplankton particles at the blue wavelength has an impact on the spectral availability, and acts as a selection factor for the composition of the phytoplankton community, with cyanobacteria being the dominate species in Lake Taihu. Handling editor: L. Naselli-Flores  相似文献   

20.
We investigated stratigraphic changes in fossil pigments and the molecular structure of the UV-absorbing fraction of pore-water dissolved organic matter in a sedimentary record from Lake Peipsi (Estonia/Russia) temporally covering the 20th century. The aims of the study were to define the onset of eutrophication in the lake and to track its course. An attempt was also made to reconstruct lake conditions before the intensive nutrient loading began. Fossil pigment analysis indicated that the eutrophication of the lake started in the 1960s and accelerated in the 1970s. Sedimentary pigments also indicate a continuing tendency of the lake ecosystem towards eutrophy in the 1980s and 1990s. However, changes in the molecular size structure of pore-water dissolved organic matter indicated that the contribution of autochthonous matter to the organic pool of the lake ecosystem had already started to increase around the end of the 1930s. We conclude that this rise was generated by a coincidence of several anthropogenic and natural factors. The pore-water data also show that a slight relative reduction in the autochthonous organic matter took place in the 1990s. A discordance in the paleodata obtained for the beginning of the 20th century complicates clear conclusions about earlier conditions in the lake. On the one hand, the qualitative characteristics of pore-water dissolved organic matter and the low concentration of chlorophyll a indicate that the phytoplankton biomass was low in Lake Peipsi during that period. On the other hand, the concentrations of marker pigments of specific phytoplankton groups are high, comparable with the values in the recent sediments. Possible reasons for the high levels of these pigments in the early 1900s sediments, such as a shift in the preservation conditions of organic substances and their transport from the lake’s catchment, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号