首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The fluorescence induced by polarized light sources, such as the lasers that are used in flow cytometry, is often polarized and anisotropic. In addition, most optical detector systems are sensitive to the direction of polarization. These two factors influence the accuracy of fluorescence intensity measurements. The intensity of two light sources can be compared only if all details of the direction and degree of polarization are known. In a previous study, we observed that fluorescence polarization might be modified by dye-dye interactions. This report further investigates the role of dye density in fluorescence polarization anisotropy. METHODS: We measured the polarization distribution of samples stained with commonly used DNA dyes. To determine the role of fluorophore proximity, we compared the monomeric and a dimeric form of the DNA dyes ethidium bromide (EB), thiazole orange (TO), and oxazole yellow (YO). RESULTS: In all dyes sampled, fluorescence polarization is less at high dye concentrations than at low concentrations. The monomeric dyes exhibit a higher degree of polarization than the dimeric dyes of the same species. CONCLUSIONS: The polarization of fluorescence from DNA dyes is related to the density of incorporation into the DNA helix. Energy transfer between molecules that are in close proximity loosens the linkage between the excitation and emission dipoles, thereby reducing the degree of polarization of the emission.  相似文献   

2.
Circular dichroism (CD) is an important spectroscopic technique for monitoring chirality and biological macromolecule conformation. However, during a CD measurement, absorbance, light scattering/turbidity, and fluorescence can also be detected. The simultaneous measurement of these different spectral features for a single sample is the basis of a multi-mode optical spectrometer. This allows time-efficient gathering of complementary information and provides a scheme to ensure that CD measurements are reliable. Aspects of circular polarization differential light scattering, pH, and temperature variation of a protein (antibody) solution are described. A procedure to help ensure that CD measurements are reliable is described.  相似文献   

3.
Calculations have been made to allow corrections for instrumental errors in the measurement of fluorescence and polarization coefficient. These errors are due to differences in transmittivities of the instruments for the horizontal and vertical components of the light. The relative error made in the quantum efficiency determination can be as large as 12%. When natural light is used for polarization measurement the relative error can be 15%. Special attention has been given to the case in which polarization measurements are used for measurements of binding of small molecules to macromolecules.  相似文献   

4.
Orientational distribution of actin filaments within a cell is an important determinant of cellular shape and motility. To map this distribution we developed a method of measuring local orientation of actin filaments. In this method actin filaments within cells are labeled with fluorescent phalloidin and are viewed at high magnification in a fluorescent microscope. Emitted fluorescence is split by a birefringent crystal giving rise to two images created by light rays polarized orthogonally with respect to each other. The two images are recorded by a high-sensitivity video camera, and polarization of fluorescence at any point is calculated from the relative intensity of both images at this point. From the value of polarization, the orientation of the absorption dipole of the dye, and thus orientation of F-actin, can be calculated. To illustrate the utility of the method, we measured orientation of actin cores in microvilli of chicken intestinal epithelial cells. F-actin in microvillar cores was labeled with rhodamine-phalloidin; measurements showed that the orientation was the same when microvillus formed a part of a brush border and when it was separated from it suggesting that "shaving" of brush borders did not distort microvillar structure. In the absence of nucleotide, polarization of fluorescence of actin cores in isolated microvilli was best fitted by assuming that a majority of fluorophores were arranged with a perfect helical symmetry along the axis of microvillus and that the absorption dipoles of fluorophores were inclined at 52 degrees with respect to the axis. When ATP was added, the shape of isolated microvilli did not change but polarization of fluorescence decreased, indicating statistically significant increase in disorder and a change of average angle to 54 degrees. We argue that these changes were due to mechanochemical interactions between actin and myosin-I.  相似文献   

5.
本文在研究了离体人体鼻咽正常组织和癌变组织的荧光寿命的基础上,实验研究了生理盐水的浓度、组织光学特性参数、激发光源的偏振性对癌变和正常鼻咽组织的荧光寿命的影响。实验结果表明:组织的光学特性参数对组织的荧光寿命有不同程度的影响;而不同浓度的生理盐水和光源的偏振性对组织的荧光寿命没有显著的影响。荧光寿命与该发射荧光的强度没有关系,只决定于局部环境,受微环境的物理化学性质因素的影响,因此荧光寿命作为人体组织癌变的检测方法,有着很好的应用前景。  相似文献   

6.
John Whitmarsh  R.P. Levine 《BBA》1974,368(2):199-213
We have investigated the process of intermolecular excitation energy transfer and the relative orientation of the chlorophyll molecules in the unicellular green alga Chlamydomonas reinhardi. The principal experiments involved in vivo measurements of the fluorescence polarization as a function of the exciting-light wavelength in the presence and in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We found that as the fluorescence lifetime increases upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea that the degree of fluorescence polarization decreases over the excitation region from 600 to 660 nm. This result, we argue, implies that a Förster mechanism of excitation energy transfer is involved for Photosystem II chlorophyll molecules absorbing primarily below 660 nm. We must add that our results do not exclude the possibility of a delocalized transfer process from being involved as well. Fluorescence polarization measurements using chloroplast fragments are also discussed in terms of a Förster transfer mechanism. As the excitation wavelength approaches 670 nm the fluorescence polarization is nearly constant upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.Experiments performed using either vertically or horizontally polarized exciting light show that the fluorescence polarization increases as the exciting light wavelength increases from 650 to 673 nm. This suggests the possibility that chlorophyll molecules absorbing at longer wavelengths have a higher degree of relative order. Furthermore, these studies imply that chlorophyll molecules exist in discrete groups that are characterized by different absorption maxima and by different degrees of the fluorescence polarization. In view of these results we discuss different models for the Photosystem II antenna system and energy transfer between different groups of optically distinguishable chlorophyll molecules.  相似文献   

7.
Current methods for fluorescence resonance energy transfer (FRET) microscopy of living cells involve taking a series of images with alternating excitation colors in separate camera exposures. Here we present a new FRET method based on polarization that requires only one camera exposure and thereby offers the possibility for better time resolution of dynamic associations among subcellular components. Polarized FRET (p-FRET) uses a simultaneous combination of excitation wavelengths from two orthogonally polarized sources, along with an emission channel tri-image splitter outfitted with appropriate polarizers, to concurrently excite and collect fluorescence from free donors, free acceptors, and FRET pairs. Based upon the throughput in each emission channel as premeasured on pure samples of each of the three species, decoupling of an unknown sample's three polarized fluorescence images can be performed to calculate the pixel-by-pixel concentrations of donor, acceptor, and FRET pairs. The theory of this approach is presented here, and its feasibility is experimentally confirmed by measurements on mixtures of cyan fluorescent protein (CFP), citrine ((Cit) a yellow fluorescent protein variant), and linked fusion proteins (CFP-L16-Cit, CFP-L7-Cit, CFP-L54-Cit) in living cells. The effects of shot noise, acceptor polarization, and FRET efficiency on the statistical accuracy of p-FRET experimental results are investigated by a noise-simulation program.  相似文献   

8.
The degree of depolarization of fluorescent light emitted from an organic dye, which is used as molecular probe, is a powerful tool in probing the microenvironment. By fluorescence depolarization the macromolecular structure can be investigated as well as the the mobility of the marker molecule itself or of the complex formed by the probe. Additional information such as energy transfer rates, donor-acceptor distances, and orientations are also measurable. These data are of particular interest if they can be measured from whole cells. Using flow cytometry, we can analyze a large number of cells with high statistical significance in a short period of time. We describe a newly developed double-beam epi-illumination arrangement for fluorescence polarization measurements that uses an autocompensation technique. This new technique permits the various depolarizing effects within the optical as well as the electronic components of the system to be continually compensated for on a cell by cell basis. Simultaneous measurements of other cell parameters for cell cycle analysis by total fluorescence intensity remains possible. The sensitivity of the system to measure polarization was determined as +/- 0.006 p (0 less than or equal to p less than or equal to 0.5 in isotropic media), which amounts to +/- 1.2% of the maximum p value. Polarization data for latex microspheres plotted in the histogram mode were measured with a standard deviation of 0.006, which proved the high resolution and the high performance of the system.  相似文献   

9.
10.
A new optical design uses a liquid crystal pixel array (LCPA) to discriminate multiple fluorescence signals on a two-dimensional biosensor array. The LCPA can selectively control the transmission of fluorescence generated from multiple biosensing elements on a planar waveguide. This device sequentially acquires the fluorescence data from the substrate by making multiple individual measurements of the sensing elements on the waveguide. The biosensing elements are patterned according to the pixel layout of the LCPA and optically aligned so that each electronically driven pixel can either transmit or filter out the fluorescence signal as specified by the user. The primary advantage of this system is that a single detection channel (i.e. photomultiplier tube (PMT)) can be used to measure multiple fluorescence signals from a two-dimensional substrate while the LCPA provides for spatial resolution. We evaluate the performance of the LCPA by testing the optical homogeneity of the liquid crystal pixels and linear dynamic range for transmitting light. The LCPA is also used with well-developed biosensing chemistry modified for this optical format.  相似文献   

11.
The fluorescence emitted by labeled particles after interaction with exciting light is conditioned by laser beam geometry and by the mode of fluorescence collection and filtration. A laser elliptic focusing mode is described, and the fluorescence characteristics of the sample cell flow are calculated. Fluorescence collection and detection through optical filters were analyzed, and efficiency was calculated for the ATC 3000 flow cytometer (Odam-Bruker, Wissembourg, France). A mathematical model is proposed for calculation of the fluorescence signal and its fluctuations. The background noise for the ATC 3000 was quantified experimentally using fluorescent microspheres of a known number of bound equivalent fluorescein isothiocyanate (FITC) molecules. These experimental measurements were found to fit the theoretical predictions, thus validating the proposed model.  相似文献   

12.
This paper outlines the design of complex nanostructures with apolar behavior which pave the way to a wider range of plasmon resonance tuning and applications requiring higher enhancement. These new nanostructure families are simply defined by symmetry considerations. An irreducible decomposition of optical response tensor demonstrates that nanoparticles which belong to C n , with n?≥?3, symmetry point group for at least one scale have an optical response insensitive on the light polarization. This is experimentally confirmed by extinction and surface-enhanced Raman-scattering measurements.  相似文献   

13.
Molecular interactions and binding are one of the most important and fundamental properties in the study of biochemical and biomedical systems. The understanding of such interactions and binding among biomolecules forms the basis for the design and processing of many biotechnological applications, such as bioseparation and immunoadsorption. In this study, we present a novel method to probe molecular interactions and binding based on surface tension measurement. This method complements conventional techniques, which are largely based on optical, spectroscopic, fluorescence polarization, chromatographic or atomic force microscopy measurements, by being definite in determining molecular binding ratio and flexible in sample preparation. Both dynamic and equilibrium (or quasi-equilibrium) information on molecular binding can be obtained through dynamic and equilibrium surface tension measurements. For an important pair of biological ligand and ligate, Protein A and immunoglobulin G (IgG), the existence of molecular interactions and the binding ratio of 1:2 have been determined unequivocally with the proposed surface tension method. These results are confirmed/supported by a mass balance calculation and spectrophotometry experiment. In addition, adsorption isotherms for Protein A and IgG separately at the air/water interface have been established with the dynamic surface tension measurements. The results show that the Langmuir isotherm equation can describe the adsorption data satisfactorily for both Protein A and IgG solutions.  相似文献   

14.
Examination was made of changes in fluorescence polarization plane by energy transfer in the chlorosomes of the green photosynthetic bacterium,Chloroflexus aurantiacus. Fluorescence anisotropy in the picosecond (ps) time region was analyzed using chlorosomes suspended in solution as well as those oriented in a polyacrylamide gel. When the main component of BChlc was preferentially excited, the decay of fluorescence anisotropy was found to depend on wavelength. In the chlorosome suspension, the anisotropy ratio of BChlc changed from 0.31 to 0.24 within 100 ps following excitation. In the baseplate BChla region, this ratio decreased to a negative value (–0.09) from the initial 0.14. In oriented samples, the degree of polarization remained at 0.68 for BChlc, and changed from 0.25 to –0.40 for the baseplate BChla by excitation light whose electric vector was parallel to the longest axis of chlorosomes. In the latter case, there was a shift from 0.30 to –0.55 by excitation perpendicular to the longest axis. Time-resolved fluorescence polarization spectra clearly indicated extensive changes in polarization plane accompanied by energy transfer. The directions of polarization plane of emission from oriented samples were mostly dependent on chlorosome orientation in the gel but not on that of the polarization plane of excitation light. Orientations of the dipole moment of fluorescence components was consistent with that of absorption components as determined by the linear dichroism (Matsuura et al. (1993) Photochem. Photobiol. 57: 92–97). A model for molecular organization of BChlc anda in chlorosomes is proposed based on anisotropic optical properties.  相似文献   

15.
Pump-and-probe techniques can be used to follow the slow rotational motions of fluorescent labels bound to macromolecules in solution. A strong pulse of polarized light initially anisotropically depletes the ground-state population. A continuous low-intensity beam of variable polarization then probes the anisotropic ground-state distribution. Using an additional emission polarizer, the generated fluorescence can be recorded as it rises towards its prepump value. A general theory of fluorescence recovery spectroscopy (FRS) is presented that allows for irreversible depletion processes like photobleaching as well as slowly reversible processes like triplet formation. In either case, rotational motions modulate recovery through cosine-squared laws for dipolar absorption and emission processes. Certain pump, probe, and emission polarization directions eliminate the directional dependence of either dipole and simplify the resulting expressions. Two anisotropy functions can then be constructed to independently monitor the rotations of either dipole. These functions are identical in form to the anisotropy used in fluorescence depolarization measurements and all rotational models developed there apply here with minor modifications. Several setups are discussed that achieve the necessary polarization alignments. These include right-angle detection equipment that is commonly available in laboratories using fluorescence methods.  相似文献   

16.
The principle of a multiple wavelength illumination method for flow cytometers, based upon a combination of a helium-neon laser and an arc lamp as illumination sources is described. By using a prism, the light from the arc lamp is dispersed and the different colors are imaged at different places on the sample stream. The small angle light scattering from the helium-neon laser light is measured as a relevant parameter and serves as a trigger signal for subsequent measurements of fluorescence or scattering of light from the arc lamp. Two experimental systems are described utilizing this principle: a system where the emission is detected orthogonally with respect to the direction of the illumination beams, and an epi-illumination system. With the orthogonal set-up multiple wave-length right angle scattering measurements are possible. This is illustrated by showing that the orthogonal scattering from erythrocytes is strongly dependent on the illumination wavelength. It is further shown that the apparatus is suitable for the measurement of intracellular pH using the pH dependence of the excitation spectrum of fluorescein. The epi-illumination system allows excitation of two (or more) fluorescent dyes with different excitation spectra. In this case the emission spectra of the fluorescent dyes may overlap substantially. This is shown by simultaneous measurement of DNA and protein of Chinese hamster lung cells using mitramycin and tetramethyl rhodamin isothiocyanate (TRITC).  相似文献   

17.
Plasmonics in Biology and Plasmon-Controlled Fluorescence   总被引:3,自引:0,他引:3  
Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow design of structures that enhance emission at specific wavelengths and the creation of new devices that control and transport the energy from excited fluorophores in the form of plasmons, and then convert the plasmons back to light. Finally, it appears possible that the use of PCF will allow construction of wide-field optical microscopy with subwavelength spatial resolution down to 25 nm.  相似文献   

18.
We present and analyze a novel optical antenna structure in the form of a polarization multiplexed bullseye antenna with a central nanoaperture. By adjusting the parameters of two, orthogonally oriented, partial bullseye structures, the resonance response for each polarization can be tailored to a specific wavelength. Constructing these dual-polarization structures in aluminum, we predict intra-aperture intensity enhancements exceeding 20 at two independent resonance wavelengths spanning the UV–visible spectrum. Moreover, these resonances share significant intra-aperture excitation volumes.  相似文献   

19.
A technique for rapid measurement of nuclear and cytoplasmic size relationships in mammalian cell populations has been developed. Based on fluorescence staining of either the nucleus alone or in combination with the cytoplasm using two-color fluorescence methods, this technique permits the simultaneous determination of nuclear and cytoplasmic diameters from fluorescence and light-scatter measurements. Cells stained in liquid suspension pass through a flow chamber at a constant velocity, intersecting a laser beam which excites cell fluorescence and causes light scatter. Depending upon which analysis procedure is used, optical sensors measure nuclear fluorescence and light scatter (whole cell size) or two-color nuclear and cytoplasmic fluorescence from individual cells crossing the laser beam. The time durations of signals generated by the nucleus and cytoplasm are converted electronically into signals proportional to the respective diameters and are displayed as frequency distribution hitograms. Illustrative examples of measurements on uniform microspheres, cultured mammalian cells and human exfoliated gynecologic cells are presented.  相似文献   

20.
Fluorescence polarization measurements on a FACS II cell sorter were compared with static measurements on a spectrofluorimeter using calibration solutions and Hoechst 33258-labeled cells. For the flow cytometric measurements on the FACS we used a pseudodepolarizer for normalization of the output of the two photomultipliers. The results showed that fluorescein and fluoresceinated bovine serum albumin (BSA) solutions gave identical values on both instruments. The mean value for fluorescence polarization of Hoechst 33258-labeled cells as measured on the FACS was the same as the value obtained with the spectrofluorimeter. Subsequently the fluorescence polarization of six different membrane probes was determined using differentiating embryonal carcinoma cells as a model system. Differentiation was induced by treatment of the cells with retinoic acid together with cyclic AMP. With diphenylhexatriene (DPH) the fluorescence polarization increased from I/I = 1.55 to 1.74 upon differentiation. With a charged analog of DPH (TMA-DPH) fluorescence polarization increased from I/I = 1.87 to 2.02. No appreciable changes in fluorescence polarization were observed in this cell system when anthroyloxysterate probes (12-AS, 9-AS, 6-AS, 2-AS) were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号