首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vpu is a 16-kDa membrane-associated phosphoprotein that is expressed from the same, singly spliced message as the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor, gp160. Previous studies suggest that Vpu functions in the late stages of viral replication, possibly in virus egression from the cell. Recently, it has been demonstrated that Vpu functions to allow gp160 to be more efficiently processed by disrupting CD4-gp160 complexes generated by transfection of HeLa cells. We show here that the lack of expression of intact Vpu results in a 90% reduction in infectious virus produced over a single round of replication from HeLa cells in the absence of CD4 expression. This reduction persists when HIV-1 particles are pseudotyped with the HIV-2 or amphotropic murine leukemia virus envelope glycoprotein. Pulse-chase analysis of HIV-1 capsid protein (p24) in the absence of CD4 and envelope glycoprotein demonstrates that the rate of virus release is reduced when Vpu is not expressed. Our findings indicate that Vpu has a function involving particle release not dependent on CD4 or envelope glycoprotein expression.  相似文献   

2.
Pretreatment of HeLa T4 cells with recombinant alpha, beta, or gamma interferon (IFN) was found to significantly inhibit syncytium formation induced by the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. All three IFNs were found to be potent inhibitors of fusion in a system in which Spodoptera frugiperda cells, infected with a baculovirus recombinant expressing the HIV-1 envelope protein, were cocultivated with HeLa T4 cells. In addition, these IFNs were also found to block HeLa T4 cell fusion induced by the HIV-1 envelope proteins expressed from a vaccinia virus recombinant. Furthermore, the IFNs inhibited cell fusion between HIV-1 envelope glycoprotein-expressing cells and either immortalized or fresh CD4+ lymphocytes pretreated with the IFNs. These results suggest that further testing of human IFNs for therapy of HIV-1 infection will be of interest.  相似文献   

3.
We identified a postentry restriction, termed Lv2, which determines the cellular tropism of two related human immunodeficiency virus type 2 (HIV-2) isolates and is dependent on the sequence of the capsid (CA) and envelope (Env) proteins. To explain the reliance on both CA and Env, we proposed that restrictive Envs deliver susceptible capsids to a compartment where Lv2 is active whereas nonrestrictive Envs deliver capsids into a compartment where Lv2 is either absent or less active. To test this model, we used compounds that affect endocytic pathways (ammonium chloride, bafilomycin A1, hypertonic sucrose) or lipid rafts (methyl-beta-cyclodextrin) to treat restrictive cells and show that restricted virus can be rescued from Lv2 if a lipid-raft-dependent, pH-independent endocytic pathway is inhibited. Furthermore, viral entry into HeLa/CD4 cells containing a tailless CD4 receptor, located outside lipid rafts, was fully permissive. Finally, we show that a variety of primary HIV-1 and HIV-2 viruses are susceptible to Lv2. Thus, we show that the route of entry, determined by the viral envelope, can influence cellular tropism by avoiding intracellular blocks to infection.  相似文献   

4.
Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as priming to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.  相似文献   

5.
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.  相似文献   

6.
HIV infection does not require endocytosis of its receptor, CD4   总被引:36,自引:0,他引:36  
The T cell surface molecule CD4 interacts with class II MHC molecules on the surface of target cells as well as with the envelope glycoprotein of human immunodeficiency virus (HIV). Internalization of CD4 molecules is observed after exposure of CD4+ T cells to either phorbol esters or appropriate antigen-bearing target cells. To determine whether HIV entry proceeds via receptor-mediated endocytosis or direct viral fusion with the cell membrane, we have constructed two mutants in the cytoplasmic domain of the CD4 protein that severely impair the ability of CD4 molecules to undergo endocytosis. Quantitative infectivity studies reveal that HeLa cell lines expressing wild-type or mutant CD4 molecules are equally susceptible to HIV infection. In addition, HIV binding does not lead to CD4 endocytosis. These studies indicate that although the CD4 molecule can be internalized, HIV entry proceeds via direct fusion of the viral envelope with the cell membrane.  相似文献   

7.
The failure to mount effective immunity to virus variants in a previously virus-infected host is known as original antigenic sin. We have previously shown that prior immunity to a virus capsid protein inhibits induction by immunization of an IFN-gamma CD8+ T cell response to an epitope linked to the capsid protein. We now demonstrate that capsid protein-primed CD4+ T cells secrete IL-10 in response to capsid protein presented by dendritic cells, and deviate CD8+ T cells responding to a linked MHC class I-restricted epitope to reduce IFN-gamma production. Neutralizing IL-10 while delivering further linked epitope, either in vitro or in vivo, restores induction by immunization of an Ag-specific IFN-gamma response to the epitope. This finding demonstrates a strategy for overcoming inhibition of MHC class I epitopes upon immunization of a host already primed to Ag, which may facilitate immunotherapy for chronic viral infection or cancer.  相似文献   

8.
Infection with human immunodeficiency virus type-1 (HIV-1) requires the presence of a CD4 molecule and chemokine receptors such as CXCR4 or CCR5 on the surface of target cells. However, it is still not clear how the virus enters the cells. Although CD4 was initially identified as the primary receptor for HIV-1, the expression of CD4 or one of the chemokine receptors alone is not sufficient to render susceptibility to infection with the virus. To ascertain whether or not adsorption of the virus needs charge-to-charge interaction between viral envelope and host cell membrane protein(s) and if binding alone promotes penetration of the virus into the cells, we have developed a chemically induced infection system targeting a CD4-negative and CXCR4-positive HeLa cell clone (N7 HeLa) which is usually not susceptible to infection with the LAI strain of HIV-1. Use of a poly-L-lysine (PLL)-coated culture plate to enhance the attachment of the virus to the cells made N7 HeLa cells infectable with HIV-1 at very low efficiency. PLL alone cannot fully substitute for the function of the CD4 molecule. However, trypsin-treated viruses, which have largely lost infectivity to CD4-positive MT-4 cells that are highly susceptible to HIV-1 infection, enhanced infectivity against N7 HeLa cells when the PLL-coated plate was used. These results provide evidence that infection with HIV-1 requires both high binding affinity between viruses and cells, and then needs a modification of the viral envelope such as cleavage of gp120/160 to enhance the infection, probably resulting in exposure of the hydrophobic fusion domain of gp41. HIV-1 infection of N7 HeLa cells was also enhanced by treatment with low pH, 12-O-tetradecanoylphorbol-13-acetate (TPA) and some factor(s) from the MT-4 cell culture supernatant. Not only tight viral adsorption with cleavage of the viral envelope but also some activated status of the cells may be required for sufficient HIV-1 infection in this artificial condition.  相似文献   

9.
The Vpu protein is a human immunodeficiency virus type 1 (HIV-1)-specific accessory protein that is required for the efficient release of viral particles from infected cells. Even though HIV-2 does not encode Vpu, we found that this virus is nevertheless capable of efficiently releasing virus particles. In fact, the rate of virus release from HeLa cells transfected with a full-length molecular clone of HIV-2, ROD10, was comparable to that observed for the vpu+ HIV-1 NL4-3 isolate and was not further enhanced by expression of Vpu in trans. However, consistent with previous observations showing that HIV-2 particle release is Vpu responsive in the context of HIV-1/HIV-2 chimeric constructs; exchanging the gag-pol region of NL4-3 with the corresponding region from pROD10 rendered the resulting chimeric virus Vpu responsive. Our finding that the responsiveness of HIV-2 particle release to Vpu is context dependent suggested the presence of a Vpu-like factor(s) encoded by HIV-2. Using chimeric proviruses encoding HIV-2 gag and pol in the context of the HIV-1 provirus that were coexpressed with subgenomic HIV-2 constructs, we found that the HIV-2 envelope glycoprotein had the ability to enhance HIV-2 particle release with an efficiency comparable to that of the HIV-1 Vpu protein. Conversely, inactivation of the HIV-2 env gene in the original ROD10 clone resulted in a decrease in the rate of viral particle release to a level that was comparable to that of Vpu-deficient HIV-1 isolates. Providing the wild-type envelope in trans rescued the particle release defect of the ROD10 envelope mutant. Thus, unlike HIV-1, which encodes two separate proteins to regulate virus release or to mediate viral entry, the HIV-2 Env protein has evolved to perform both functions.  相似文献   

10.
Laminin receptor (Lamr) in shrimp was previously proposed to be a potential receptor protein for Taura syndrome virus (TSV) based on yeast two-hybrid assays. Since shrimp Lamr bound to the VP1 capsid protein of TSV, we were interested to know whether capsid/envelope proteins from other shrimp viruses would also bind to Lamr. Thus, capsid/envelope encoding genes from 5 additional shrimp viruses were examined. These were Penaeus stylirostris densovirus (PstDNV), white spot syndrome virus (WSSV), infectious myonecrosis virus (IMNV), Macrobrachium rosenbergii nodavirus (MrNV), and yellow head virus (YHV). Protein interaction analysis using yeast two-hybrid assay revealed that Lamr specifically interacted with capsid/envelope proteins of RNA viruses IMNV and YHV but not MrNV and not with the capsid/envelope proteins of DNA viruses PstDNV and WSSV. In vitro pull-down assay also confirmed the interaction between Lamr and YHV gp116 envelope protein, and injection of recombinant Lamr (rLamr) protein produced in yeast cells protected shrimp against YHV in laboratory challenge tests.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1)-specific Vpu is an 81-amino-acid amphipathic integral membrane protein with at least two different biological functions: (i) enhancement of virus particle release from the plasma membrane of HIV-1-infected cells and (ii) degradation of the virus receptor CD4 in the endoplasmic reticulum (ER). We have previously found that Vpu is phosphorylated in infected cells at two seryl residues in positions 52 and 56 by the ubiquitous casein kinase 2. To study the role of Vpu phosphorylation on its biological activity, a mutant of the vpu gene lacking both phosphoacceptor sites was introduced into the infectious molecular clone of HIV-1, pNL4-3, as well as subgenomic Vpu expression vectors. This mutation did not affect the expression level or the stability of Vpu but had a significant effect on its biological activity in infected T cells as well as transfected HeLa cells. Despite the presence of comparable amounts of wild-type and nonphosphorylated Vpu, decay of CD4 was observed only in the presence of phosphorylated wild-type Vpu. Nonphosphorylated Vpu was unable to induce degradation of CD4 even if the proteins were artificially retained in the ER. In contrast, Vpu-mediated enhancement of virus secretion was only partially dependent on Vpu phosphorylation. Enhancement of particle release by wild-type Vpu was efficiently blocked when Vpu was artificially retained in the ER, suggesting that the two biological functions of Vpu are independent, occur at different sites within a cell, and exhibit different sensitivity to phosphorylation.  相似文献   

12.
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.  相似文献   

13.
We have performed a detailed analysis of the biochemical properties of the human immunodeficiency virus (HIV) type 1 vpu gene product to elucidate its function during virus replication. Our data suggest that vpu is posttranslationally modified by phosphorylation, since a 16-kilodalton phosphoprotein can be specifically immunoprecipitated with both a serum from an HIV-positive individual (HIV-positive serum) and a vpu-specific antiserum. In contrast, our results suggest that vpu is not glycosylated, even though the protein contains a potential glycosylation site. In vitro translation studies demonstrated that vpu is cotranslationally integrated into microsomal membranes, suggesting that vpu is an integral membrane protein. While vpu was found in significant quantities in virus-producing cells, the protein could not be detected in cell-free culture fluids and is therefore most likely not viron associated. Processing of viral precursor proteins was unaffected by the absence of vpu, and no differences were detected in the protein compositions of wild-type and mutant virions. However, virus release from cultures producing vpu-defective virus was found to be delayed, resulting in the intracellular accumulation of viral proteins. Our data suggest that vpu has a function in the release of virus particles from infected cells.  相似文献   

14.
We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.  相似文献   

15.
BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) Nef protein is required for efficient virus replication in vivo and displays a number of distinct and apparently unrelated biological activities in vitro. Of these, one of the most readily demonstrated is the efficient internalization and degradation of cell-surface CD4, the receptor for the HIV-1 envelope protein. The biological purpose of this internalization has, however, remained unclear. RESULTS: Using human 293T cells expressing high levels of cell-surface CD4 or CD8, we demonstrate that CD4, but not CD8, can dramatically reduce the release of infectious virions bearing the HIV-1 envelope protein and induce a concomitant increase in the accumulation of cell-associated HIV-1 structural proteins. In contrast, CD4 had no effect on the release of HIV-1 bearing a heterologous envelope protein unable to bind CD4. Nef expression totally reversed CD4-mediated inhibition but only if the CD4 used remained susceptible to Nef-induced internalization. CONCLUSIONS: These results support the hypothesis that cell-surface CD4 can interact with the envelope protein present on budding HIV-1 virions to inhibit their release. The internalization and degradation of cell-surface CD4 induced by the viral Nef protein can fully reverse this inhibition and is, therefore, likely to facilitate the spread of virus in vivo.  相似文献   

16.
CD4 molecules on human cells function as a major receptor for human immunodeficiency virus (HIV); however, certain CD4-negative cell types may also be susceptible to infection. Therefore, we attempted to quantitate the relationship between HIV infection and CD4 expression on human cell lines before and after introduction of the CD4 gene by using a retrovirus vector. Prior to introduction of the CD4 expression vector, low levels of HIV infection were detected by a sensitive focal immunoassay on all three cell types studied. With several HIV strains in clones of human cervical carcinoma (HeLa) cells expressing different levels of CD4, HIV titer increased with increasing CD4 expression. In contrast, in squamous cell carcinoma cells (SCL1) and astroglial cells (U87MG), even high levels of CD4 expression failed to augment HIV infection. The CD4 protein expressed in these two cell lines had the expected molecular weight and was capable of binding HIV virions. However, in contrast to CD4-positive HeLa cells, CD4-positive U87MG and SCL1 cells were unable to form syncytia when cultured with cells expressing HIV envelope protein. Thus, the inability of HIV to infect these cells appeared to be due to lack of fusion between HIV virion envelope proteins and CD4-positive cell membranes. This block is infectivity was overcome when cells were infected with HIV which was pseudotyped with the envelope protein of amphotropic murine leukemia virus. Thus, in addition to CD4, other cell surface molecules appear to be required for successful HIV entry into and infection of these two human cell lines.  相似文献   

17.
18.
Analysis of [35S]methionine-labeled tryptic peptides of the large proteins induced by temperature-sensitive mutants of Semliki Forest virus was carried out. The 130,000-molecular-weight protein induced by ts-2 and ts-3 mutants contained the peptides of capsid protein and of both major envelope proteins E1 and E2. The ts-3-induced protein with molecular weight of 97,000 contained peptides of the capsid and envelope protein E2 but not those of E1. Two proteins with molecular weights of 78,000 and 86,000 from ts-1-infected cells did not contain the peptides of the virion structural proteins. They are evidently expressions of the nonstructural part of the 42S RNA genome of Semliki Forest virus.  相似文献   

19.
To characterize the immunity developed by patients infected by chikungunya virus (CHIKV), we studied the intensity and specificity of CHIKV-specific T cells mediated responses in chronic and recovered patients at 12 to 24 months post-infection. T cells were challenged in vitro against CHIKV synthetic peptides covering the length of three viral proteins, capsid, E2 and nsP1 proteins as well as all inactivated virus particles. Cytokine production was assessed by ELISPOT and intracellular labeling. T cells producing IFN-γ were detected against CHIKV in 85% patient’s cells either by direct ELISPOT assay (69% of patients) or after expansion of memory T cells allowing the detection of both CD4 and CD8 specific-T cells in 16% additional cases. The IFN-γ response was mainly engaged in response to nsP1 or E2 (52% and 46% cases, respectively) but in only 27% cases against the capsid. The anti-E2 response represented half the magnitude of the total CHIKV IFN-γ production and was mainly directed against the C-terminal half part of the protein. Almost all patients had conserved a T cell specific response against CHIKV with a clear hierarchy of T cell responses (CD8 > CD4) engaged against E2 > nsP1 > capsid. More importantly, the intensity of responses was not significantly different between recovered and chronic patients. These findings constitute key elements to a better understanding of patient T cell immunoreactivity against CHIKV and argue against a possible defect of T cell immunoresponse in the chronicity post-CHIKV infection.  相似文献   

20.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号