首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the goodeid placental analogue, trophotaeniae provide extraembryonic gut-derived exchange surfaces. Ameca splendens embryos possess endocytosing trophotaeniae that are capable of absorbing a dazzling array of proteinaceous substances. The iron core protein, native ferritin (NF), and several radioiodinated proteinaceous substances were used to study ligand and binding site pathways in the trophotaenial absorptive cells (TACs). Time sequence analysis of NF trafficking indicated an exclusively lysosomal pathway. Binding to TACs of NF was completely inhibitable by proteins containing multiple lysine residues such as apoferritin, bovine serum albumin (BSA), human transferrin (HTf), fetuin, hemoglobin, myoglobin, cytochrome c, ubiquitin, parvalbumin as well as the random copolymers, poly(Glu,Lys,Tyr)6:3:1 and poly(D-Glu,D-Lys)6:4. Peptide hormones and pepsin that contains only one lysine residue did not produce inhibitory effects. Radiolabels such as (125)I-BSA, (125)I-HTf and (125)I-poly(Glu,Lys,Tyr) bound to trophotaeniae in a specific saturable manner. Any two proteins were shown to hinder one another in getting hold of a binding site. Concentration-dependent (125)I-BSA binding and Scatchard analysis of the data revealed both low- and medium-affinity binding with apparent dissociation constants, K(d)s, of 3.4 x 10(-5) M and 2 x 10(-7) M, respectively. Binding of NF and radioiodinated proteins was inhibited in the presence of a large excess of L-Lys, D-Lys, and several dipeptides containing Lys. Both Ca(2+)-depletion and low pH dramatically reduced the TACs' capacity to bind proteins. The effects of acidotropic agents included a reversible loss of surface protein binding sites, tremendous vacuolation, and the arrest of lysosomal degradation. Collectively, present results demonstrate that TACs bind and absorb multiple proteinaceous substances through a mechanism satisfying the criteria of receptor-mediated endocytosis. It is concluded that scavenger protein binding sites are used to ingest proteins for lysosomal degradation, helping to meet the embryos' amino acid requirement.  相似文献   

2.
Embryos of the viviparous goodeid fish Ameca spendens develop within the ovarian lumen, where they establish a placental association with the maternal organism and undergo a 15,000% increase in embryonic dry weight. The placenta consists of an embryonic component, the trophotaeniae, and a maternal component, the internal ovarian epithelium. Examination with light microscopy and with transmission and scanning electron microscopy reveals that trophotaeniae of A. splendens are extraembryonic membranes consisting of five ribbon-like processes originating from a tube-like mass of tissue that extends outward from the perianal region of developing embryos. There are two sets of lateral processes and a longer single median process. Trophotaeniae possess an outer epithelium that surrounds a highly vascularized core of loose connective tissue. Epithelial cells possess apical microvilli and a pronounced endocytotic apparatus. Cells of the trophotaenial epithelium are either tightly apposed along their lateral margins or separated by enlarged intercellular spaces. Regions of the trophotaenial epithelium possessing enlarged intercellular spaces are distributed in patches. The trophotaenial epithelium is continuous with the embryonic hindgut epithelium and is considered to be derived from it. Comparison of trophotaenial morphology in A. splendens with that reported in Xenotoca eiseni reveals differences in histological organization. The former possess unsheathed trophotaeniae, whereas the latter are sheathed. We postulate that the apposition of trophotaenial epithelium to the internal ovarian epithelium constitutes a placental association equivalent to a noninvasive, epithelioform of an inverted yolk sac placenta. Structural relationships of embryonic and maternal tissues of the trophotaenial placenta are discussed in relation to maternal-embryonic nutrient transfer processes.  相似文献   

3.
Protein uptake and degradation by trophotaenial cells of the viviparous goodeid fish Ameca splendens were studied colorimetrically and ultrastructurally using horseradish peroxidase (HRP) as a tracer and acid (ACPase) and alkaline (ALPase) phosphatase cytochemistry. Trophotaeniae are ribbon-like external projections of the embryonic gut that are equivalent to greatly hypertrophied intestinal villi. During gestation within the ovarian lumen, trophotaeniae are directly apposed to the internal ovarian epithelium (IOE) where they establish a placental association between the developing embryo and maternal organism. Trophotaenial absorptive cells possess an ALPase reactive brush border, an endocytotic apparatus, and ACPase reactive standing lysosomes. Ultrastructural studies of protein uptake indicate that cells of the trophotaenial epithelium take up HRP by micropinocytosis and degrade it within lysosomes. Initially (from 1.5-10 min), HRP is taken up in vitro at 22 degrees C at the apical cell surface and passes via endocytotic vesicles into an apical canalicular system. From 1.5 to 10 min exposure, HRP passes passes from the apical canalicular system to a series of small collecting vesicles. After 10 min, HRP is detected within large ACPase reactive supranuclear lysosomes. Three hours after an initial 1 h exposure to HRP, most peroxidase activity within supranuclear lysosomes is no longer detected. Presence of Golgi complexes, residual bodies, and secretory granules in the infranuclear cytoplasm suggest that products of protein uptake and hydrolysis are discharged across basal and lateral cell surfaces and into the trophotaenial circulation. Trophotaeniae of embryos incubated in vitro in HRP-saline take up HRP at an initial rate of 13.5 ng HRP/mg trophotaenial protein/min. The system becomes saturated after 3 h. Trophotaeniae incubated at 4 degrees C show little or no uptake. In trophotaeniae continuously pulsed with HRP for 1 h, then incubated in HRP-free saline, levels of absorbed peroxidase declined at a rate of 0.5 ng/mg trophotaenial protein/min. HRP does not appear to enter the embryo via extra-trophotaenial routes. These findings are consistent with the putative role of trophotaeniae as the embryonic component of the functional placenta of goodeid fishes. Trophotaenial uptake of maternal nutrients accounts for a massive (15,000%) increase in embryonic dry weight during gestation.  相似文献   

4.
Summary The trophotaenial absorptive cells (TACs) in goodeid embryos facilitate nutrient absorption during prolonged periods of intraovarian gestation. In a study of membrane differentiations associated with solute and ligand transfer in the trophotaeniae of Xenotoca eiseni, embryos were incubated in vivo with cationized ferritin (CF) prior to freeze-cleaving. This exposure to high concentrations of an adsorptive ligand was meant to induce swelling of the endosomal compartment. Macromolecular trafficking in TACs occurs via an apical endocytic complex consisting of plasma membrane invaginations, a large population of small vesicles, uniformly thick apical tubules, and endosomes. Freeze-fracture replicas showed that the microvillar plasma membrane P-face of TACs was studded with intramembrane particles (IMPs) at a fairly high density, whereas that of the cell surface proper contained a distinctly lower density and the tubulovesicular endocytic pits contained almost no IMPs. The majority of small vesicles and apical tubules in a near surface position displayed P-fracture faces with only a few odd IMPs, indicating that membrane, shuttling between the apical plasma membrane and intracellular sorting organelles, obviously does not carry along many large-sized integral membrane proteins. The distended endosomal compartment had many P-face-associated particles primarily clustered into patches. Specializations of the lateral plasma membrane included 4–8 tight junctional strands, relatively large complements of gap junction proteins, and numerous plaques of desmosomal membrane particles. A system of lamellar cisternae underlay the lateral cell surface that was in continuity with the intraepithelial space by numerous tubular canals, giving rise to an intracellular amplification of the basolateral plasma membrane. Their outward openings appeared as tiny pits on the cytoplasmic faces of freeze-cleaved cell membrane. The density of IMPs on the P-faces of the surface plasma membrane was apparently lower than that on its invaginated lamellar complex. Hence, it is concluded that the mobility of integral membrane proteins in the plane of the membrane may be hampered in movement across the surface pores.Supported by the Deutsche Forschungsgemeinschaft (Schi 268/1-1)  相似文献   

5.
The species of the family Goodeidae have evolved reproductive strategies involving intraovarian gestation, early evacuation of nearly yolk‐exhausted embryos from the ovigerous tissue into the ovarian cavity, placental matrotrophy during intraluminal gestation, and the birth of highly developed fry. The inner ovarian lining becomes hypervascularized during gestational periods and functions as the maternal component of the placental association. Embryotrophic liquid is secreted by the inner ovarian epithelium into the ovarian cavity. Comparative electrophoretic analyses of embryotrophe and maternal blood serum provide evidence for the transfer of maternal serum proteins into the embryotrophe. Trophotaeniae, proctodaeal processes of the embryos, provide a surface for nutrient absorption. Endocytic activity was demonstrated by ingestion of unspecific tracer proteins in various species. Moreover, the trophotaenial absorptive cells (TACs) in Ameca splendens ingest various proteins or random copolymers conjugated to colloidal gold as well as radioiodinated proteins in a way that satisfies the criteria of receptor‐mediated endocytosis. Several aminopeptidases (APs) on the surface of TACs were identified as protein binding sites as evidenced by inhibition of binding and uptake of marker proteins in the presence of AP substrates or AP inhibitors. Morphological adaptations of the embryonic circulatory system pertaining to nutrient and gas exchange were characterized. The embryonic epidermis comprises two layers of squamous cells closely underlain by a dense capillary net. Efficient gas exchange is facilitated by a thin embryotrophe‐blood barrier of both the embryonic skin and the intraovarian lining. J. Morphol. 276:991–1003, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Summary The absorptive epithelium of the trophotaeniae of goodeid embryos is involved in the micropinocytotic uptake of protein macromolecules from the ovarian embryotrophe. Incubations of viable Xenoophorus captivus embryos in vitro with horseradish peroxidase (HRP) and/or cationized ferritin (CF) allows the tracing of the fluid-phase and receptor-mediated pathways, respectively. Effects of lowered temperature on both these endocytotic mechanisms have been investigated. At 10° C, trophotaenial absorptive cells (TACs) have a strong capacity to ingest marker proteins from double tracer media. Surface-bound ligands (CF) and solutes (HRP), taken up in primary pinocytic vesicles, are rapidly channelled to the endosomal compartment. Part of the ingested CF is segregated into dense apical tubules and small vesicles indicating that membrane recycling and transcytosis continue at 10° C. Adsorptive endocytosis of CF at 5° C proceeds at a decreased rate. After incubation periods of 30 min and 1 h, tracer molecules can be found in vesicular, tubular and vacuolar compartments of the apical endocytic zone. At 0° C, no uptake of ligand worth mentioning could be ascertained. Fluid-phase endocytosis, on the other hand, is observable at this temperature. Enzyme reaction product accumulates in flattened vacuoles rather than typical voluminous endosomes. After prolonged exposure to HRP, the epithelial junctional complex becomes leaky and the marker protein penetrates the intercellular space and the lateral lamellar membrane invaginations of TACs.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

7.
Embryos of goodeid fishes develop to term within the ovarian lumen, where they undergo considerable increase in weight due to transfer of maternal nutrients across a trophotaenial placenta. The placenta consists of an embryonic component, the trophotaeniae, and a maternal component, the ovarian lining. The latter was examined by transmission electron microscopy, scanning electron microscopy, and light microscopy in both gravid and nongravid ovaries of the viviparous goodeid fish, Ameca splendens. The single median ovary of A. splendens is a hollow structure whose lumen is divided into lateral chambers by a highly folded longitudinal ovarian septum. Germinal tissue occurs within folds of the ovarian lining that extend into each of the two lateral chambers. Matrotrophic embryonic development takes place within ovarian chambers. During gestation, the lining of the ovarian lumen is in direct apposition to body surfaces and trophotaenial epithelia of developing embryos. The ovarian lining consists of a simple cuboidal epithelium, termed the internal ovarian epithelium (IOE), overlying a well-vascularized bed of connective tissue. Cells of the IOE are apically convex. Well-developed granular and agranular endoplasmic reticula and numerous large membrane-bound vesicles with electron-dense content occupy the apical cytoplasm of IOE cells. Two functional states of the same cell type are distinguished within the IOE. Phase I cells contain few, if any, large apically situated vesicles; Phase II cells contain many. Secretory products of the IOE are presumed to be an important source of nutrients for embryonic development. Structural and functional relationships of the IOE to the trophotaenial epithelium of developing embryos are discussed in relation to maternal-embryonic nutrient transfer processes.  相似文献   

8.
Embryos of most species within the viviparous teleost family Goodeidae develop characteristics perianal processes that are considered to be derivatives of the embryonic hindgut. These processes, termed trophotaeniae, are covered with an epithelium that is continuous with the absorptive epithelium lining the hindgut. Gestation is intraovarian, and trophotaeniae mediate the uptake of maternally provided nutrients into the embryo from the ovarian fluid. Ultrastructural examination of the trophotaeniae of four goodeid species reveals substantial diversity in the organization of the epithelium within the family. The trophotaeniae of Alloophorus robustus, Zoogoneticus quitzeoensis, and Ilyodon furcidens have morphological features associated with the endocytosis of macromolecules and can be shown to endocytose the exogenous protein tracer horseradish peroxidase (HRP) rapidly. The trophotaenial epithelia of these species differ from one another with respect to other morphological features such as cell height, organization of the brush border, and the complexity of the intercellular spaces. The trophotaeniae of Goodea atripinnis lack an endocytotic apparatus and do not endocytose HRP. However, the overall organization of G. atripinnis trophotaenial cells suggests a function as a transporting epithelium. The cells have a dense brush border, numerous mitochondria, and many mitochondria that are enveloped by lamellar sheets of intracellular membrane. Post-fixation with osmium and potassium ferrocyanide reveals a marked difference in the complexity of the subepithelial connective tissue. Alloophorus robustus and Z. quitzeoensis exhibit an extremely electron-dense ground substance containing many acellular components. Goodea atripinnis exhibits an electron-lucid ground substance with few acellular components. © 1994 Wiley-Liss, Inc.  相似文献   

9.
We developed a spectrophotometric assay for peptide hydrolysis by aminopeptidases (APs). The assay enables the measurement of free amino acids liberated by AP-catalyzed peptide hydrolysis using 4-aminoantipyrine, phenol, peroxidase, and l-amino acid oxidase. We investigated the specificity of bacterial APs [enzymes from Streptomyces griseus (SGAP), Streptomyces septatus (SSAP), and Aeromonas proteolytica (AAP)] toward peptide substrates using this assay method. Although these enzymes most efficiently cleave leucyl derivatives among 20 aminoacyl derivatives, in peptide hydrolysis, the catalytic efficiencies of Phe-Phe hydrolysis by SGAP and SSAP exceed that of Leu-Phe hydrolysis. Furthermore, all enzymes showed the maximum catalytic efficiencies for Phe-Phe-Phe hydrolysis. These results indicate that the hydrolytic activities of bacterial APs are affected by the nature of the penultimate residue or flanking moiety and the length of the peptide substrate.  相似文献   

10.
Embryonic growth and trophotaenial development are examined in two species of goodeid fish, Ameca splendens and Goodea atripinnis. During gestation of A. splendens, embryonic dry mass may increase from 0.21 mg at the onset of development to 31.70 mg at term. In G. atripinnis, embryonic dry mass ranges from 0.25 mg at the onset of development to 3.15 mg at term. Increase in mass is primarily due to the uptake of maternally derived nutrients by trophotaeniae, externalized embryonic gut derivatives. Trophotaenial development in both species is divisible into five phases. During the first phase, the anus is formed. The second phase involves dilation of the anus, enlargement of the perianal lips, differentiation of the hindgut absorptive epithelium, and formation of the trophotaenial peduncle. The third phase is characterized by a further marked hypertrophy and lateral expansion of the perianal lips that results in the formation of short trophotaenial processes. During the fourth phase, there is continued outward expansion of the inner mucosal surface of the trophotaenial peduncle that results in its eversion and lobulation. Placental function is established by this phase. Axial elongation and dichotomous branching of trophotaenial processes occurs during the fifth phase. Development of rosette and ribbon trophotaeniae differ in the degree of axial elongation during the fifth and final phase.  相似文献   

11.
Summary The trophotaeniae and abdominal epidermis of Xenoophorus captivus embryos were studied by light, scanning and transmission electron microscopy, freeze-fracture replication, and histochemical techniques for unspecific phosphatases. The trophotaenial epithelium is continuous with both the intestinal mucosa and the epidermis, and contains structural elements similar to both. The predominant component is a simple brush-border epithelium consisting of cuboid cells showing signs of endocytotic activity at their apical surfaces. These are the absorptive elements of the trophotaeniae, and phosphatase ultracytochemistry demonstrates the presence of alkaline phosphatase on the external leaflet of their exposed plasma membranes. Enormously dilated intercellular spaces and large gaps occur in this epithelial covering.Beneath this absorptive epithelium lies an incomplete layer of dense squamous cells that appear to be derived from the stratified epithelium covering trophotaenial areas free of brush border epithelium and the abdominal wall. The exposed cell surfaces of this component are modified to form an elaborate pattern of microplicae which can be seen by scanning EM where gaps appear in the overlying absorptive epithelium. The stratified epithelium of the abdominal wall is underlain with collagen fibrils and an intricate network of capillaries, and is considered to be a site of cutaneous respiration. This cutaneous gas-exchange pathway averages 2–4 m in thickness. Chloride cells are constituents of the stratified epithelium of the trophotaenial base and abdominal wall.The involvement of the endodermal component of the trophotaenial epithelium in the transfer of nutrients and possibly antibodies, and the role of the abdominal epidermis and ectodermal trophotaenial epithelium in gas exchange and osmoregulation, are discussed.  相似文献   

12.
Activated monocytic cells and neutrophils adhere to substrates coated with a wide variety of proteins including albumins, catalase, casein, and various extracellular matrix proteins. This adhesion can be specifically inhibited by antibodies directed to the beta 2 integrin subunit. This adhesion to protein substrates shares some similarities with two known protein-protein recognition systems with little apparent binding specificity, namely, the interactions of heat shock proteins and histocompatibility antigens with denatured proteins or peptides. Cell adhesion and affinity chromatography experiments were performed to test the hypothesis that monocytes and neutrophils adhere to and migrate on protein substrates due to the presence of cell surface receptors that recognize common protein structures such as denatured protein epitopes. Adhesion experiments revealed that activated monocytic cells adhere more rapidly and extensively on substrates coated with denatured protein versus native protein. Both adhesion and migration on such substrates in vitro was dependent on beta 2 integrins since blocking antibodies completely interfered with these cellular responses. Affinity chromatography experiments revealed that the Mac-1 and p150,95 integrins could be isolated from monocyte-differentiated HL-60 cells or neutrophils on a denatured protein-Sepharose column. Much greater yields of the receptors were obtained on a denatured versus native protein Sepharose column. The binding of these receptors was specific in that the LFA-1 beta 2 integrin did not bind to the denatured protein column. These data provide evidence that the adhesion of activated monocytes and neutrophils to many protein substrates in vitro is due to the ability of Mac-1 and p150,95 to directly bind to denatured proteins. A model of leukocyte adhesion and invasion whereby activated leukocytes denature extracellular proteins during diapedesis, making them suitable for recognition by beta 2 integrins, is proposed.  相似文献   

13.
Prepartum embryos obtained from old museum specimens of the ovo-viviparous fish, Oligopus longhursti, possess external intestinal appendages. They are structurally identical to the trophotaeniae described by Turner ('37) and Mendoza ('37) in goodeid fishes. This is the first report of trophotaeniae in the viviparous ophidioids. Two developmental Stages, A and B, were observed. A is a tailbud stage, 2.0-2.25 mm in length, and B is a finfold embryo, 3.0-3.25 mm in length (Wourms and Bayne, '73). Trophotaeniae occur in the form of a single median anterior process and a pair of median posterior processes. They originate from a conspicuous peduncle formed around the anus. The processes of stage A are 1.5-2.0 mm long, 0.05 mm in diameter at their base and 0.04 mm at their tip. The stage B processes are 2.75-3.00 mm long, 0.075 mm in diameter at their base and 0.050 mm at their tip. Serial sections show that the surface epithelium of the trophotaeniae is continuous with and identical to the surface epithelium of the trophotaeniae is continuous with and identical to the surface epithelium of the embryonic gut. Examination both by transmission and scanning electron microscopy confirms that the apical surface of the trophotaenial epithelium and intestinal epithelium are covered with microvilli. Trophotaeniae are considered to function in the uptake of nutrients since they are structurally identical to intestinal epithelial cells. We suggest that maternal nutrients absorbed by trophotaeniae rather than yolk reserves are the principal source of embryonic metabolites. Trophotaeniae may afford a selective advantage since their existence in O. longhursti maximizes the number of large size embryos which a female can produce at one time. Occurrence of trophotaeniae in ophidioid, goodeid and zoarcid embryos is a remarkable example of convergent evolution.  相似文献   

14.
Ohto M  Nakamura K 《Plant physiology》1995,109(3):973-981
The sugar-inducible expression of genes for sporamin and [beta]-amylase in leaf explants of sweet potato (Ipomoea batatas) and that of a [beta]-glucuronidase-fusion gene, with the promoter of the gene for [beta]-amylase in leaves of tobacco (Nicotiana tabacum), requires Ca2+ signaling (M. Ohto, K. Hayashi, M. Isobe, K. Nakamura [1995] Plant J 7: 297-307), and it was inhibited by staurosporin and K252a, inhibitors of protein kinases. Autophosphorylation activities of several potential protein kinases in leaves of tobacco were significantly higher in younger leaves than in mature leaves. However, the autophosphorylation activities of these proteins in mature leaves, especially those of the major autophosphorylatable proteins with apparent molecular masses of 56 and 54 kD, increased upon treatment of leaf discs with a 0.3 M solution of sucrose, glucose, or fructose, did not increase with sorbitol or mannitol treatments, and the increase by sucrose was inhibited by cycloheximide. Autophosphorylation of the 56- and 54-kD protein in vitro was dependent on Ca2+ and inhibited by staurosporine, K-252a, and by W-7. These results suggest that they belong to the family of calcium-dependent protein kinases. They were concentrated in the plasma membrane fraction and were released from membrane vesicles by high salt or with sodium carbonate. The possible functions of these sugar-inducible calcium-dependent protein kinases associated with the plasma membrane are discussed.  相似文献   

15.
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4‐phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5‐bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane‐associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.  相似文献   

16.
Influenza virus matrix protein (M1), a critical protein required for virus assembly and budding, is presumed to interact with viral glycoproteins on the outer side and viral ribonucleoprotein on the inner side. However, because of the inherent membrane-binding ability of M1 protein, it has been difficult to demonstrate the specific interaction of M1 protein with hemagglutinin (HA) or neuraminidase (NA), the influenza virus envelope glycoproteins. Using Triton X-100 (TX-100) detergent treatment of membrane fractions and floatation in sucrose gradients, we observed that the membrane-bound M1 protein expressed alone or coexpressed with heterologous Sendai virus F was totally TX-100 soluble but the membrane-bound M1 protein expressed in the presence of HA and NA was predominantly detergent resistant and floated to the top of the density gradient. Furthermore, both the cytoplasmic tail and the transmembrane domain of HA facilitated binding of M1 to detergent-resistant membranes. Analysis of the membrane association of M1 in the early and late phases of the influenza virus infectious cycle revealed that the interaction of M1 with mature glycoproteins which associated with the detergent-resistant lipid rafts was responsible for the detergent resistance of membrane-bound M1. Immunofluorescence analysis by confocal microscopy also demonstrated that, in influenza virus-infected cells, a fraction of M1 protein colocalized with HA and associated with the HA in transit to the plasma membrane via the exocytic pathway. Similar results for colocalization were obtained when M1 and HA were coexpressed and HA transport was blocked by monensin treatment. These studies indicate that both HA and NA interact with influenza virus M1 and that HA associates with M1 via its cytoplasmic tail and transmembrane domain.  相似文献   

17.
Studies on anti‐picornavirus compounds have revealed an essential role of a novel cellular pathway via host phosphatidylinositol‐4 kinase III beta (PI4KB) and oxysterol‐binding protein (OSBP) family I in poliovirus (PV) replication. However, the molecular role for this pathway in PV replication has yet to be determined. Here, viral and host proteins modulating production of phosphatidylinositol 4‐phosphate (PI4P) and accumulation of unesterified cholesterol (UC) in cells were analyzed and the role of the PI4KB/OSBP pathway in PV replication characterized. Virus protein 2BC was identified as a novel interactant of PI4KB. PI4KB and VCP/p97 bind to a partially overlapped region of 2BC with different sensitivity to a 2C inhibitor. Production of PI4P and accumulation of UC were enhanced by virus protein 2BC, but suppressed by virus proteins 3A and 3AB. In PV‐infected cells, a PI4KB inhibitor suppressed production of PI4P, and both a PI4KB inhibitor and an OSBP ligand suppressed accumulation of UC on virus‐induced membrane structure. Inhibition of PI4KB activity caused dissociation of OSBP from virus‐induced membrane structure in PV‐infected cells. Synthesis of viral nascent RNA in PV‐infected cells was not affected in the presence of PI4KB inhibitor and OSBP ligand; however, transient pre‐treatment of PV‐infected cells with these inhibitors suppressed viral RNA synthesis. These results suggest that virus proteins modulate PI4KB activity and provide PI4P for recruitment of OSBP to accumulate UC on virus‐induced membrane structure for formation of a virus replication complex.  相似文献   

18.
During the last years, the importance of antibacterial peptides has attracted considerable attention. We report here that peptides derived from the fifth domain of beta-2 glycoprotein I (beta(2)GPI), a human heparin binding plasma protein, have antibacterial activities against Gram-positive and Gram-negative bacteria. Streptococcus pyogenes, an important human pathogen that can survive and grow in human blood, has developed mechanisms to escape the attack by these peptides. Thus, protein H and M1 protein, two surface proteins of the highly pathogenic S. pyogenes AP1 strain, bind full-length beta(2)GPI and thereby prevent the processing of beta(2)GPI by proteases from polymorphonuclear neutrophils (PMNs) into antibacterial peptides. In addition, protein H and M1 protein, released from the bacterial cell wall by PMN-derived proteases, bind to, and inhibit the activity of, beta(2)GPI-derived antibacterial peptides. Taken together, the data suggest that the interaction between the streptococcal proteins and beta(2)GPI or beta(2)GPI-derived peptides presents a novel mechanism to resist an antibacterial attack by beta(2)GPI-cleavage products.  相似文献   

19.
《The Journal of cell biology》1995,130(5):1161-1169
We discovered by using high resolution video microscopy, that membranes become attached selectively to the growing plus ends of microtubules by membrane/microtubule tip attachment complexes (TACs) in interphase- arrested, undiluted, Xenopus egg extracts. Persistent plus end growth of stationary microtubules pushed the membranes into thin tubules and dragged them through the cytoplasm at the approximately 20 microns/min velocity typical of free plus ends. Membrane tubules also remained attached to plus ends when they switched to the shortening phase of dynamic instability at velocities typical of free ends, 50-60 microns/min. Over time, the membrane tubules contacted and fused with one another along their lengths, forming a polygonal network much like the distribution of ER in cells. Several components of the membrane networks formed by TACs were identified as ER by immunofluorescent staining using antibodies to ER-resident proteins. TAC motility was not inhibited by known inhibitors of microtubule motor activity, including 5 mM AMP-PNP, 250 microM orthovanadate, and ATP depletion. These results show that membrane/microtubule TACs enable polymerizing ends to push and depolymerizing ends to pull membranes into thin tubular extensions and networks at fast velocities.  相似文献   

20.
N-ethylmaleimide-sensitive fusion protein (NSF) is an ATPase required for vesicular transport throughout the constitutive secretory and endocytic pathways. Recently, NSF has also been implicated in regulated exocytosis in synapses--based on SNAP-mediated binding in vitro to a complex of neurotoxin substrates (termed 'SNAREs'). This work has generated an hypothesis in which the interaction of SNAREs (SNAP receptors) on the vesicle membrane with those on the target membrane forms a docking complex to which SNAPs bind, thus allowing NSF to bind and elicit membrane fusion. However, current evidence supports an earlier, pre-fusion role for NSF. We speculate that this role may be as a molecular chaperone for the membrane docking/fusion machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号