首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MADS-box genes are core members of the ABCDE model for flower development where D-lineage genes play essential roles in ovule identity determination. We report here the cloning and functional characterization of two duplicated MADS-box genes, BdMADS2 and BdMADS4 from Brachypodium distachyon, the model plant of temperate grasses. BdMADS2 and BdMADS4 were highly similar to grass D-lineage MADS-box genes on the protein level and they fell in a distinctive clade on the phylogenetic tree, with conserved intron/exon structures to their rice and maize orthologues. Quantitative real time PCR revealed comparable expression levels were detected in all floral organs of Brachypodium for both genes, except for the carpel where the expression level of BdMADS2 was five times higher than that of BdMADS4. Over expression of these two genes in Arabidopsis caused curly rosette leaves, small sepals and petals, and early flowering. However, BdMADS4 showed stronger phenotypic effects than BdMADS2, suggesting functional divergence between the two genes. Cis-regulatory element prediction showed that the promoter region (including the first intron) of BdMADS4 possesses much less class I BPC protein binding motifs than that of BdMADS2 which may be responsible for the specific expression in carpels. Yeast two-hybrid assays showed that both BdMADS2 and BdMADS4 can interact with BdSEP3, but BdMADS2 can additionally interact with the putative APETALA1 orthologue (BdAP1), suggesting a deviation in their protein interaction patterns. Taken together, our data demonstrate a significant divergence between the two Brachypodium D-lineage MADS-box genes and provide evidences for their sub-functionalization.  相似文献   

3.
Pectate lyases (PL) depolymerize demethylated pectin (pectate, EC 4.2.2.2) by catalyzing the eliminative cleavage of α-1,4-glycosidic linked galacturonan. Pectate Lyase-like (PLL) genes are one of the largest and most complex families in plants. However, studies on the phylogeny, gene structure, and expression of PLL genes are limited. To understand the potential functions of PLL genes in plants, we characterized their intron–exon structure, phylogenetic relationships, and protein structures, and measured their expression patterns in various tissues, specifically the reproductive tissues in Brassica rapa. Sequence alignments revealed two characteristic motifs in PLL genes. The chromosome location analysis indicated that 18 of the 46 PLL genes were located in the least fractionated sub-genome (LF) of B. rapa, while 16 were located in the medium fractionated sub-genome (MF1) and 12 in the more fractionated sub-genome (MF2). Quantitative RT-PCR analysis showed that BrPLL genes were expressed in various tissues, with most of them being expressed in flowers. Detailed qRT-PCR analysis identified 11 pollen specific PLL genes and several other genes with unique spatial expression patterns. In addition, some duplicated genes showed similar expression patterns. The phylogenetic analysis identified three PLL gene subfamilies in plants, among which subfamily II might have evolved from gene neofunctionalization or subfunctionalization. Therefore, this study opens the possibility for exploring the roles of PLL genes during plant development.  相似文献   

4.
Antimicrobial peptide plays an important role in fish immunity. The small molecular antimicrobial peptide Hepcidin in turbot was studied and reported in this paper. The Ferroportin 1 (FPN1) and Transferrin Receptor (TFR) genes, which are related to Hepcidin, were cloned in turbot. The characteristics of Hepcidin and its related genes were studied, including an analysis of the expression patterns and cloning of the Hepcidin promoter, the relationship between Hepcidin and NF-κB and the regulation of iron-metabolism. The results showed that the promoter of SmHepcidin contains the binding sites of NF-κB, and NF-κB may directly or indirectly receive feedback signals from SmHepcidin. In the liver, spleen and kidney, in which there was an increased SmHepcidin expression level, SmFPN1 dramatically decreased and SmTFR was also either decreased or exhibited no obvious change after bacterial/viral infection and an injection of exogenous Hepcidin protein. RNAi experiments in turbot kidney cells confirmed the expression changes of these gene patterns. Furthermore, the administration of exogenous Hepcidin protein, which regulates the level of chelatable iron in cells, further confirmed the function of Hepcidin in iron metabolism. It is speculated that the rapidly increased expression of SmHepcidin may induce changes in the expression of related genes, and that the in vivo chelatable iron concentration which participates in the antibacterial process was also changed when exogenous pathogens are present in turbot. It is suggested that SmHepcidin plays a defensive role against pathogenic infection.  相似文献   

5.
6.
Allelic variation in gene expression is common in humans and this variation is associated with phenotypic variation. In this study, we employed high-density single nucleotide polymorphism (SNP) chips containing 13,900 exonic SNPs to identify genes with allelic gene expression in cells from colorectal cancer cell lines. We found 2 monoallelically expressed genes (ERAP2 and MYLK4), 32 genes with an allelic imbalance in their expression, and 13 genes showing allele substitution by RNA editing. Among a total of 34 allelically expressed genes in colorectal cancer cells, 15 genes (44.1%) were associated with cis-acting eQTL, indicating that large portions of allelically expressed genes are regulated by cis-acting mechanisms of gene expression. In addition, potential regulatory variants present in the proximal promoter regions of genes showing either monoallelic expression or allelic imbalance were not tightly linked with coding SNPs, which were detected with allelic gene expression. These results suggest that multiple rare variants could be involved in the cis-acting regulatory mechanism of allelic gene expression. In the comparison with allelic gene expression data from Centre d'Etude du Polymorphisme Humain (CEPH) family B cells, 12 genes showed B-cell specific allelic imbalance and 1 noncoding SNP showed colorectal cancer cell-specific allelic imbalance. In addition, different patterns of allele substitution were observed between B cells and colorectal cancer cells. Overall, our study not only indicates that allelic gene expression is common in colorectal cancer cells, but our study also provides a better understanding of allele-specific gene expression in colorectal cancer cells.  相似文献   

7.
Possessing three circular chromosomes is a distinct genomic characteristic of Burkholderia cenocepacia AU 1054, a clinically important pathogen in cystic fibrosis. In this study, base composition, codon usage and functional role category were analyzed in the B. cenocepacia AU 1054 genome. Although no bias in the base and codon usage was detected between any two chromosomes, function differences did exist in the genes of each chromosome. Similar base composition and differential functional role categories indicated that genes on these three chromosomes were relatively stable and that a proper division of labor was established. Based on variations in the base or codon usage, four small gene clusters were observed in all of the genes. Multivariate analysis revealed that protein hydrophobicity played a predominant role in shaping base usage bias, while horizontal gene transfer and the gene expression level were the two most important factors that affected the codon usage bias. Interestingly, we also found that these gene clusters were correlated with different biological functions: (i) 45 pyrimidine-leading-codon preferred genes were predominantly involved in regulatory function; (ii) most drug resistance-related genes involved in 826 genes that coding for hydrophobic proteins; (iii) most of the 111 horizontal transfer genes were responsible for genomic plasticity; and (iv) 73 highly expressed genes (predicted by their codon adaptation index values) showed environmental adaptation to cystic fibrosis. Our results showed that genes with base or codon usage bias were affected by mutational pressure and natural selection, and their functions could contribute to drug assistance and transmissible activity in B. cenocepacia.  相似文献   

8.
9.
The testis-enriched genes ZNF230/Znf230 are located on human chromosome 11p15/mouse chromosome 7 near conserved imprinting control regions. Typical CpG islands (CGIs) extend from the promoter to the first exon in each of these genes. To investigate the correlation between the methylation status of the above CGIs and the expression patterns of the two genes, we performed bisulfite genomic sequencing of genomic DNA from human and mouse tissues and cells. The results showed that the CGIs of ZNF230/Znf230 were completely unmethylated in all selected tissues and cells, regardless of the expression levels of the two genes. Further experiments using Znf230-second-exon-knockout mice to investigate the imprinting status of Znf230 showed that its expression was not affected by genomic imprinting. However, an in vitro methylation assay illustrated that the methylation of these CpG sites could repress the expression of the luciferase reporter gene. Furthermore, chromatin immunoprecipitation with anti-Specificity protein 1 (Sp1) antibody showed that Sp1 could bind to the CGIs in the ZNF230/Znf230 gene promoter. Thus, we propose that the unmethylated state of ZNF230/Znf230 CGIs may be a prerequisite for their expression but not sufficient for their abundant expression in the testis, and that Sp1 binding may be one factor involved in preserving the methylation-free state of ZNF230/Znf230 CGIs.  相似文献   

10.
MicroRNAs (miRNAs) constitute a class of small non-coding endogenous RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs are intensively investigated and they have been found to be a pivotal component of developmental regulation processes. Recent studies showed the non-cell autonomous function of several miRNAs. We analyzed the accumulation pattern of selected miRNAs in Arabidopsis thaliana embryonic tissues. The majority of the investigated miRNAs showed uniform accumulation across the embryo suggesting their possible role at this developmental stage. In the case of miR167 however, we detected a gradient-like expression profile which in earlier studies has been considered to be the hallmark of the non-cell autonomous activity of miRNAs. Using reporter assay we analyzed the expression patterns of the four MIR167 precursor genes. We found that two of the precursor genes, MIR167A and MIR167B, also showed an overlapping gradient-like expression patterns in the embryo. These data indicate that in addition to non-cell autonomous activity of some miRNAs, the gradient-like expression patterns can be generated also by the specific expression characteristic of miRNA precursor genes.  相似文献   

11.
12.
DNA methylation is one of the most important epigenetic modifications involved in the development and differentiation in plants. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Both tissues show significantly different tissue specificity and regenerative abilities in vitro. However, the characteristics of DNA methylation modification and its roles in regulating the organ development in cauliflower remain largely unknown. In the present study, the DNA methylation status between the hypocotyl and cotyledon of cauliflower seedlings were analyzed. The results indicated that although the hypocotyl and cotyledon of cauliflower seedlings share the same genome, the genomic DNA methylation levels and patterns at CCGG sites were different. Compared with the cotyledon, the hypocotyl showed higher DNA methylation level, and more loci showing methylation pattern adjustments were also discovered. Twelve loci with changes of DNA methylation patterns were further explored. The quantitative expression analysis indicated that eight out of twelve sequenced fragments showed differential expression between the hypocotyl and cotyledon, of which the expression of six sequences was identified to be negative correlation with their DNA methylation status. In addition, three main DNA methyltransferase genes MET1, CMT3 and DRM were first explored in cauliflower. The results indicated that the expression of these three genes was closely associated with the different DNA methylation status in the hypocotyl and cotyledon. These findings provided more information to further explore the roles of DNA methylation modification in tissue differentiation and development of cauliflower.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号