首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two eosinophil ribonucleases, eosinophil-derived neurotoxin (EDN/RNase 2) and eosinophil cationic protein (ECP/RNase 3), are among the most rapidly evolving coding sequences known among primates. The eight mouse genes identified as orthologs of EDN and ECP form a highly divergent, species-limited cluster. We present here the rat ribonuclease cluster, a group of eight distinct ribonuclease A superfamily genes that are more closely related to one another than they are to their murine counterparts. The existence of independent gene clusters suggests that numerous duplications and diversification events have occurred at these loci recently, sometime after the divergence of these two rodent species (∼10–15 million years ago). Nonsynonymous substitutions per site (d N) calculated for the 64 mouse/rat gene pairs indicate that these ribonucleases are incorporating nonsilent mutations at accelerated rates, and comparisons of nonsynonymous to synonymous substitution (d N / d S) suggest that diversity in the mouse ribonuclease cluster is promoted by positive (Darwinian) selection. Although the pressures promoting similar but clearly independent styles of rapid diversification among these primate and rodent genes remain uncertain, our recent findings regarding the function of human EDN suggest a role for these ribonucleases in antiviral host defense. Received: 8 April 1999 / Accepted: 22 June 1999  相似文献   

2.
Algorithmic details to obtain maximum likelihood estimates of parameters on a large phylogeny are discussed. On a large tree, an efficient approach is to optimize branch lengths one at a time while updating parameters in the substitution model simultaneously. Codon substitution models that allow for variable nonsynonymous/synonymous rate ratios (ω=d N/d S) among sites are used to analyze a data set of human influenza virus type A hemagglutinin (HA) genes. The data set has 349 sequences. Methods for obtaining approximate estimates of branch lengths for codon models are explored, and the estimates are used to test for positive selection and to identify sites under selection. Compared with results obtained from the exact method estimating all parameters by maximum likelihood, the approximate methods produced reliable results. The analysis identified a number of sites in the viral gene under diversifying Darwinian selection and demonstrated the importance of including many sequences in the data in detecting positive selection at individual sites. Received: 25 April 2000 / Accepted: 24 July 2000  相似文献   

3.
In human populations, a null allele having several nucleotide differences from the wild-type allele is segregating at the FUT2 locus (the ABO-Secretor locus) encoding α(1,2)fucosyltransferase. To estimate the age of the most recent common ancestor (MRCA) of these two alleles, we sequenced FUT2 homologues from chimpanzee, gorilla, orangutan, and green monkey. Since we did not detect acceleration or any heterogeneity in the substitution rate at this locus among these species, the age of the MRCA was estimated to be around 3 MYA, assuming the divergence time of human and chimpanzee to be 5 MYA. We developed a simple test to examine whether or not the old age of the MRCA of the FUT2 is consistent with that expected for two divergent neutral alleles sampled from a random mating population. An application of the test to the data at FUT2 indicated that the age of the MRCA is too old to be explained by the simple neutral assumptions, although our test depends on accurate estimation of the divergence time of human and chimpanzee in units of twice the human population size. Various possibilities including balancing selection are discussed to explain this old age of the MRCA. Received: 9 May 1999 / Accepted: 20 September 1999  相似文献   

4.
To characterize the coding-sequence divergence of closely related genomes, we compared DNA sequence divergence between sequences from a Brassica rapa ssp. pekinensis EST library isolated from flower buds and genomic sequences from Arabidopsis thaliana. The specific objectives were (i) to determine the distribution of and relationship between K a and K s, (ii) to identify genes with the lowest and highest K a:K s values, and (iii) to evaluate how codon usage has diverged between two closely related species. We found that the distribution of K a:K s was unimodal, and that substitution rates were more variable at nonsynonymous than synonymous sites, and detected no evidence that K a and K s were positively correlated. Several genes had K a:K s values equal to or near zero, as expected for genes that have evolved under strong selective constraint. In contrast, there were no genes with K a:K s >1 and thus we found no strong evidence that any of the 218 sequences we analyzed have evolved in response to positive selection. We detected a stronger codon bias but a lower frequency of GC at synonymous sites in A. thaliana than B. rapa. Moreover, there has been a shift in the profile of most commonly used synonymous codons since these two species diverged from one another. This shift in codon usage may have been caused by stronger selection acting on codon usage or by a shift in the direction of mutational bias in the B. rapa phylogenetic lineage.  相似文献   

5.
The pattern of polymorphisms at major histocompatibility complex loci was studied by computer simulations and by DNA sequence analysis. Two types of selection, overdominance plus short-term selection and maternal–fetal incompatibility, were simulated for a gene family with intra- and interlocus gene conversion. Both types of selection were found to be consistent with the observed patterns of polymorphisms. It was also found that the more interlocus conversion occurs, the higher the divergence becomes at both nonsynonymous and synonymous sites. The ratio of nonsynonymous-to-synonymous divergence among alleles decreases as the interlocus conversion rate increases. These results agree with the interpretation that the rate of interlocus conversion is lower in human genes than in genes of other nonprimate mammals. This is because, in the latter, synonymous divergence at the ARS (antigen recognition site) is often higher than that at the non-ARS, whereas in the former, this is not so. Also, the ratio of nonsynonymous to synonymous substitutions at the ARS tends to be higher in human genes than in other mammalian genes. The main difference between overdominance plus short-term selection and maternal–fetal interaction is that the number of alleles and heterozygosity per locus are higher in the latter than in the former under the presumed selection intensities. However, the average divergence among alleles tends to be lower in the latter than in the former under similar conditions. Received: 30 September 1997 / Accepted: 15 December 1997  相似文献   

6.
Estimation of the Transition/Transversion Rate Bias and Species Sampling   总被引:7,自引:0,他引:7  
The transition/transversion (ti/tv) rate ratios are estimated by pairwise sequence comparison and joint likelihood analysis using mitochondrial cytochrome b genes of 28 primate species, representing both the Strepsirrhini (lemurs and lories) and the Anthropoidea (monkeys, apes, and humans). Pairwise comparison reveals a strong negative correlation between estimates of the ti/tv ratio and the sequence distance, even when both are corrected for multiple substitutions. The maximum-likelihood estimate of the ti/tv ratio changes with the species included in the analysis. The ti/tv bias within the lemuriform taxa is found to be as strong as in the anthropoids, in contradiction to an earlier study which sampled only one lemuriform. Simulations show the surprising result that both the pairwise correction method and the joint likelihood analysis tend to overcorrect for multiple substitutions and overestimate the ti/tv ratio, especially at low sequence divergence. The bias, however, is not large enough to account for the observed patterns. Nucleotide frequency biases, variation of substitution rates among sites, and different evolutionary dynamics at the three codon positions can be ruled out as possible causes. The likelihood-ratio test suggests that the ti/tv rate ratios may be variable among evolutionary lineages. Without any biological evidence for such a variation, however, we are left with no plausible explanations for the observed patterns other than a possible saturation effect due to the unrealistic nature of the model assumed. Received: 1 October 1997 / Accepted: 29 September 1998  相似文献   

7.
Thirty complete coding sequences of human major histocompatibility complex (Mhc) class II DRB alleles, spanning 237 codons, were analyzed for phylogenetic information using distance, parsimony, and likelihood approaches. Allelic genealogies derived from different parts of the coding sequence (exon 2, the 5′ and 3′ ends of exon 2, respectively, and exons 3–6) were compared. Contrary to prior assertions, a rigorous analysis of allelic genealogies in this gene family cannot be used to justify the claim that the lineage leading to modern humans contained on average at least 100,000 individuals. Phylogenetic inferences based upon the exon 2 region of the DRB loci are complicated by selection and recombination, so this part of the gene does not provide a complete and accurate view of allelic relationships. Attempts to reconstruct human history from genetic data must use realistic models which consider the complicating factors of nonequilibrium populations, recombination, and different patterns of selection. Received: 19 February 1997 / Accepted: 12 June 1997  相似文献   

8.
We surveyed the molecular evolutionary characteristics of 25 plant gene families, with the goal of better understanding general processes in plant gene family evolution. The survey was based on 247 GenBank sequences representing four grass species (maize, rice, wheat, and barley). For each gene family, orthology and paralogy relationships were uncertain. Recognizing this uncertainty, we characterized the molecular evolution of each gene family in four ways. First, we calculated the ratio of nonsynonymous to synonymous substitutions (d N/d S) both on branches of gene phylogenies and across codons. Our results indicated that the d N/d S ratio was statistically heterogeneous across branches in 17 of 25 (68%) gene families. The vast majority of d N/d S estimates were <<1.0, suggestive of selective constraint on amino acid replacements, and no estimates were >1.0, either across phylogenetic lineages or across codons. Second, we tested separately for nonsynonymous and synonymous molecular clocks. Sixty-eight percent of gene families rejected a nonsynonymous molecular clock, and 52% of gene families rejected a synonymous molecular clock. Thus, most gene families in this study deviated from clock-like evolution at either synonymous or nonsynonymous sites. Third, we calculated the effective number of codons and the proportion of G+C synonymous sites for each sequence in each gene family. One or both quantities vary significantly within 18 of 25 gene families. Finally, we tested for gene conversion, and only six gene families provided evidence of gene conversion events. Altogether, evolution for these 25 gene families is marked by selective constraint that varies among gene family members, a lack of molecular clock at both synonymous and nonsynonymous sites, and substantial variation in codon usage. Received: 25 May 2000 / Accepted: 16 October 2000  相似文献   

9.
Fimbrial adhesins allow bacteria to interact with and attach to their environment. The bacteria possibly benefit from these interactions, but all external structures including adhesins also allow bacteria to be identified by other organisms. Thus adhesion molecules might be under multiple forms of selection including selection to constrain functional interactions or evolve novel epitopes to avoid recognition. We address these issues by studying genetic diversity in the Escherichia coli type-1 fimbrial major subunit, fimA. Overall, sequence diversity in fimA is high (π= 0.07) relative to that in other E. coli genes. High diversity is a function of positive diversifying selection, as detected by d N/d S ratios higher than 1.0, and amino acid residuces subject to diversifying selection are nonrandomly clustered on the exterior surface of the peptide. In addition, McDonald and Kreitman tests suggest that there has been historical but not current directional selection at fimA between E. coli and Salmonella. Finally, some regions of the fimA peptide appear to be under strong structural constraint within E. coli, particularly the interior regions of the molecule that is involved in subunit to subunit interaction. Recombination also plays a major role contributing to E. coli fimA allelic variation and estimates of recombination (2N e c) and mutation (2N eμ) are about the same. Recombination may act to separate the diverse evolutionary forces in different regions of the fimA peptide. Received: 13 April 2000 / Accepted: 28 October 2000  相似文献   

10.
Sequence data of mitochondrial 16S ribosomal DNA (mt-rDNA) and nuclear 28S ribosomal DNA (nuc-rDNA) were compared in two honeybee species (Apis mellifera and Apis dorsata) and a selection of 22 wasp species (Vespidae) with different levels of sociality. The averge substitution rates in mt-rDNA and nuc-rDNA were almost-equal in solitary species. In species with larger nests, however, the difference between the nuclear and the mitochondrial substitution rate significantly increased. The average substitution ratio, ψ (nucleotide substitutions in mt-rDNA/nucleotide substitutions in nuc-rDNA) was 1.48 ± 0.12 (SE) among the solitary Eumeninae, 3.70 ± 0.15 among five primitive social Stenogastrinae species, 3.24 ± 0.20 among five Polistinae species, 5.76 ± 0.33 among nine highly eusocial Vespinae, and 12.7 in the two Apis species. The high egg-laying rate and the effective population size skew between the sexes may contribute to the rise of the substitution ratio in the highly eusocial species. Drift and bottleneck effects in the mitochondrial DNA pool during speciation events as well as polyandry may further enhance this phenomenon. Received: 12 January 1998 / Accepted: 28 April 1998  相似文献   

11.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

12.
To date, the small nuclear 4.5SI RNA has only been studied in the rat (Rattus norvegicus). Combining PCR and hybridization analyses, we have revealed 4.5SI RNA homologues sequences in the genomes of four myomorph rodent families (Muridae, Cricetidae, Spalicidae, and Rhizomyidae), and not in other myomorph families (Dipodidae, Zapodidae, Geomyidae, and Heteromyidae) or sciuromorph and caviomorph rodents. By Northern-hybridization, 4.5SI RNA has been detected in the common rat (R. norvegicus, Muridae), golden hamster (Mesocricetus auratus, Cricetidae), and Russian mole rat (Spalax microphthalmus, Spalacidae), but not in the related great jerboa (Allactaga jaculus, Dipodidae) or in four non-myomorph rodent species tested. cDNA derived from 4.5SI RNA of M. auratus and S. microphthalmus has been cloned and sequenced. The hamster RNA is found to differ from rat 4.5SI RNA by only one nucleotide substitution. For the mole rat, two variants of 4.5SI RNA are detected: short (S) and long (L) with length 101 and 108 nt, respectively. The L variant differs from the S variant as well as from murid and cricetid 4.5SI RNAs by both a 7 nt insertion and a varying number of nucleotide substitutions. The sequence similarity between the spalacid S-variant and murid/crecitid variants of 4.5SI RNA is 90%. Judging from species distribution, 4.5SI RNA genes emerged during the same period of time as the related short interspersed element B2 arose. This occurred after the divergence of Dipodidae lineage but before the branching of Spalicidae/Rhizomyidae lineage from a common myomorph rodent stem. S variant genes seemed to emerge in a common ancestor of spalacids and rhizomyds whereas L variant genes formed in spalacids following the divergence of these two families. The low rate of evolutionary changes of 4.5SI RNA, at least, in murids and cricetids (6 × 10−4 substitutions per site per million years), suggests that this RNA is under selection constraint and have a function. This is a remarkable fact if the recent origin and narrow species distribution range of 4.5SI RNA genes is taken into account. Genes with narrow species distribution are proposed to be referred to as stenogenes. Received: 11 December 2000 / Accepted: 27 August 2001  相似文献   

13.
Cultured isolates of the unicellular planktonic cyanobacteria Prochlorococcus and marine Synechococcus belong to a single marine picophytoplankton clade. Within this clade, two deeply branching lineages of Prochlorococcus, two lineages of marine A Synechococcus and one lineage of marine B Synechococcus exhibit closely spaced divergence points with low bootstrap support. This pattern is consistent with a near-simultaneous diversification of marine lineages with divinyl chlorophyll b and phycobilisomes as photosynthetic antennae. Inferences from 16S ribosomal RNA sequences including data for 18 marine picophytoplankton clade members were congruent with results of psbB and petB and D sequence analyses focusing on five strains of Prochlorococcus and one strain of marine A Synechococcus. Third codon position and intergenic region nucleotide frequencies vary widely among members of the marine picophytoplankton group, suggesting that substitution biases differ among the lineages. Nonetheless, standard phylogenetic methods and newer algorithms insensitive to such biases did not recover different branching patterns within the group, and failed to cluster Prochlorococcus with chloroplasts or other chlorophyll b-containing prokaryotes. Prochlorococcus isolated from surface waters of stratified, oligotrophic ocean provinces predominate in a lineage exhibiting low G + C nucleotide frequencies at highly variable positions. Received: 18 January 1997 / Accepted: 18 May 1997  相似文献   

14.
The relationship between the silent substitution rate (K s) and the GC content along the genome is a focal point of the debate about the origin of the isochore structure in vertebrates. Recent estimation of the silent substitution rate showed a positive correlation between K s and GC content, in contradiction with the predictions of both the regional mutation bias model and the selection or biased gene conversion model. The aim of this paper is to help resolve this contradiction between theoretical studies and data. We analyzed the relationship between K s and GC content under (1) uniform mutation bias, (2) a regional mutation bias, and (3) mutation bias and selection. We report that an increase in K s with GC content is expected under mutation bias because of either nonequilibrium of the isochore structure or an increasing mutation rate from AT toward GC nucleotides in GC-richer isochores. We show by simulations that CpG deamination tends to increase the mutation rate with GC content in a regional mutation bias model. We also demonstrate that the relationship between K s and GC under the selectionist or biased gene conversion model is positive under weak selection if the mutation selection equilibrium GC frequency is less than 0.5. Received: 28 March 2001 / Accepted: 16 May 2001  相似文献   

15.
The extracellular hemoglobins of cladocerans derive from the aggregation of 12 two-domain globin subunits that are apparently encoded by four genes. This study establishes that at least some of these genes occur as a tandem array in both Daphnia magna and Daphnia exilis. The genes share a uniform structure; a bridge intron separates two globin domains which each include three exons and two introns. Introns are small, averaging just 77 bp, but a longer sequence (2.2–3.2 kb) separates adjacent globin genes. A survey of structural diversity in globin genes from other daphniids revealed three independent cases of intron loss, but exon lengths were identical, excepting a 3-bp insertion in exon 5 of Simocephalus. Heterogeneity in the extent of nucleotide divergence was marked among exons, largely as a result of the pronounced diversification of the terminal exon. This variation reflected, in part, varying exposure to concerted evolution. Conversion events were frequent in exons 1–4 but were absent from exons 5 and 6. Because of this difference, the results of phylogenetic analyses were strongly affected by the sequences employed in this construction. Phylogenies based on total nucleotide divergence in exons 1–4 revealed affinities among all genes isolated from a single species, reflecting the impact of gene conversion events. In contrast, phylogenies based on total nucleotide divergence in exons 5 and 6 revealed affinities among orthologous genes from different taxa. Received: 8 March 1999 / Accepted: 14 July 1999  相似文献   

16.
Hughes AL 《Immunogenetics》2000,51(6):473-486
 The phylogenetic relationships and patterns of nucleotide substitution were compared for introns and exons of class II major histocompatibility complex (MHC) genes in three datasets: human DRB1, human DQA1, and cyprinid fish DAB1. In both human DRB1 and cyprinid DAB1, there was strong evidence that recombination events between alleles have occurred in such a way that intron and exon sequences of a given allele do not necessarily share the same evolutionary history. In the case of human DRB1, recombination was found to have homogenized intron 1 and intron 2 sequences relative to exon 2 sequences within lineages of alleles but not between lineages. As a result, mean divergence times of intron sequences are much more recent than those of exonic sequences. Thus, the divergence time of DRB1 introns cannot be used to date that of exons in the same alleles, and the hypothesis that most human DRB1 polymorphism is of very recent origin is not supported. Received: 5 September 1999 / Revised: 30 December 1999  相似文献   

17.
Retrovirus-like sequences and their solitary (solo) long terminal repeats (LTRs) are common repetitive elements in eukaryotic genomes. We reported previously that the tandemly arrayed genes encoding U2 snRNA (the RNU2 locus) in humans and apes contain a solo LTR (U2-LTR) which was presumably generated by homologous recombination between the two LTRs of an ancestral provirus that is retained in the orthologous baboon RNU2 locus. We have now sequenced the orthologous U2-LTRs in human, chimpanzee, gorilla, orangutan, and baboon and examined numerous homologs of the U2-LTR that are dispersed throughout the human genome. Although these U2-LTR homologs have been collectively referred to as LTR13 in the literature, they do not display sequence similarity to any known retroviral LTRs; however, the structure of LTR13 closely resembles that of other retroviral LTRs with a putative promoter, polyadenylation signal, and a tandemly repeated 53-bp enhancer-like element. Genomic blotting indicates that LTR13 is primate-specific; based on sequence analysis, we estimate there are about 2,500 LTR13 elements in the human genome. Comparison of the primate U2-LTR sequences suggests that the homologous recombination event that gave rise to the solo U2-LTR occurred soon after insertion of the ancestral provirus into the ancestral U2 tandem array. Phylogenetic analysis of the LTR13 family confirms that it is diverse, but the orthologous U2-LTRs form a coherent group in which chimpanzee is closest to the humans; orangutan is a clear outgroup of human, chimpanzee, and gorilla; and baboon is a distant relative of human, chimpanzee, gorilla, and orangutan. We compare the LTR13 family with other known LTRs and consider whether these LTRs might play a role in concerted evolution of the primate RNU2 locus. Received: 29 September 1997 / Accepted: 16 January 1998  相似文献   

18.
Neutral DNA polymorphisms from an 8-kb segment of the dystrophin gene, previously ascertained in a worldwide sample (n= 250 chromosomes), were used to characterize the population ancestral to the present-day human groups. The ancestral state of each polymorphic site was determined by comparing human variants with their orthologous sites in the great apes. The ``age before fixation' of the underlying mutations was estimated from the frequencies of the new alleles and analyzed in the context of these polymorphisms' distribution among 13 populations from Africa, Europe, Asia, New Guinea, and the Americas (n= 860 chromosomes in total). Seventeen polymorphisms older tan 100,000–200,000 years, which contributed ∼90% to the overall nucleotide diversity, were common to all human groups. Polymorphisms endemic to human groups or continentally restricted were younger than 100,000–200,000 years. Africans (six populations) with 13 such sites stood out from the rest of the world (seven populations), where only 2 population-specific variants were observed. The similarity of the frequencies of the old polymorphisms in Africans and non-Africans suggested a similar profile of genetic variability in the population before the modern human's divergence. This ancestral population was characterized by an effective size of about 10,000 as estimated from the nucleotide diversity; this size may describe the number of breeding individuals over a long time during the Middle Pleistocene or reflect a speciation bottleneck from an initially larger population at the end of this period. Received: 3 February 1998 / Accepted: 9 February 1998  相似文献   

19.
Mitochondrial genetic codons can be categorized by four patterns of nucleotide-site degeneracy based on varying combinations of twofold- or nondegenerate sites at first codon positions and twofold- or fourfold-degenerate sites at third codon positions. Herein, a model of molecular evolution is introduced that uses these patterns to calculate expected substitution frequencies for each codon position and substitution type relative to overall number of synonymous or nonsynonymous substitutions. Regions of the pocket gopher cytochrome oxidase subunit I (COI) and cytochrome b (cyt-b) genes are analyzed using this model. Chi-square distributions are used to produce relative goodness-of-fit (GF) scores for measuring the difference between substitution frequencies predicted by the codon-degeneracy model (CDM), and frequencies inferred using a well-supported phylogenetic tree of closely related species. The GF scores for expected and observed synonymous (GFsyn= 0.429, p= 0.807) and nonsynonymous (GFns= 2.309, p= 0.679) substitution frequencies resulted in a failure to reject the CDM as a null hypothesis for the molecular evolution of COI and cyt-b in pocket gophers. Alternative tree topologies and calculations of transition bias for these data result in higher GF scores. Received: 25 March 1999 / Accepted: 17 September 1999  相似文献   

20.
Recombination is well known as a complicating factor in the interpretation of molecular phylogenies. Here we describe a maximum likelihood sliding window method based on a likelihood ratio test for scanning DNA sequence alignments for regions of incongruent phylogenetic signals, such as those influenced by recombination. Using this method, we identify several instances of gene conversion between paralogous chaperonin genes in euryarchaeote Archaea, many of which are not detected by two other widely used methods. In the Thermococcus/Pyrococcus lineage, where a gene duplication producing a and b paralogues predates the divergence of Thermococcus strains KS-1 and KS-8, gene conversion has homogenized portions of the a and b genes in KS-8 since the divergence of these two strains. A region near the 3′ end of the a and b paralogues in the methanogen Methanobacterium thermoautotrophicum also appears to have undergone gene conversion. We apply the method to two additional test data sets, the argF gene of Neisseria and a set of actin paralogues in maize, and show that it successfully identifies all the recombinant regions that were previously detected with other methods. Our approach is relatively insensitive to the presence of divergent sequences in the alignment, making it ideal for detecting recombination between both closely and distantly related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号