首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.  相似文献   

2.
3.
This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism''s distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.  相似文献   

4.
(A) REVIEW OF EARLIER METHODS: Manipulations; fasciotomy; Phelps' operation; Steindler's operation; anterior arch-plates.(B) Reasons for their relative failure.-(1) Correction of the deformity is imperfect, and (2) as they deal with the existing deformity only, and not with its cause, the result is not permanent; relapse occurs.(C) Evolution of the modern operation.-Two facts in connexion with the ordinary "idiopathic" type of pes cavus are constant, and therefore noteworthy, viz.: (a) the deformity is entirely a fore-foot deformity, consisting of dropping-down of the fore-foot, and (b) paralysis of the lumbrical or of the interosseous muscles is never found at operation.This suggests that a cause for the fore-foot drop should be sought. Pes cavus never occurs in flail foot, but may develop in mild cases of paralysis of the anterior tibial (extensor) group of muscles; this suggests that in less marked cases of paresis of these muscles, pes cavus may result; in fact, this has been observed.Finally, a case in which the legs were known to have been normal, and one was damaged, anteriorly (thereby weakening the long extensor action) resulted in the development of typical unilateral pes cavus.The part played by the interossei and lumbrical muscles is purely passive, and results from the dropping-down of the metatarsal heads beyond their line of action. This can be demonstrated on any case in which contracture of the soft parts of the toes has not occurred; pushing-up the anterior arch brings down the toes, and vice versa.The problem, then, seems to consist of finding a means to strengthen the relatively weak long extensors, and of giving them a stronger and more direct lifting action upon the metatarsal heads.(D) The modern operation.-This consists of two distinct parts: (a) the correction of existing deformity, and (b) the adoption of measures to prevent recurrence of the deformity. (a) Mere non-selective elongation of the structures of the sole is inadequate; those on the inner side must be lengthened and flattened more than those on the outer side; therefore, the joint-capsules, fasci?, tendon-sheaths, etc., are divided as freely as possible, by open operation, on the inner side of the foot. Steindler's section of all structures attached to the os calcis then allows the whole foot to elongate; this is followed by vigorous manipulation, and this completes stage (a).(b) The extensor tendons are then transplanted into holes bored through the necks of the metatarsal bones (Murk Jansen's operation, modified), and are sutured, the foot being held over-corrected meanwhile.If the toes are contracted, and the above method does not correct the deformity, arthrodesis of the proximal interphalangeal joints is performed; the fifth toe may perhaps be amputated.(E) After-treatment and results.-Other Points: The results seen to be permanent. At what age should this operation be performed? Treatment, at earlier ages, The type and degree of disability caused by pes cavus. Relief of advanced cases.  相似文献   

5.
The neuroanatomical organization of the dynamic (bag1) and static (bag2 and chain) intrafusal systems was compared by light and electron microscopy of serial sections among 71 poles of muscle spindle in soleus (SOL), extensor digitorum longus (EDL), and lumbrical (LUM) muscles in the rat. Eighty-four percent of 195 fusimotor (gamma) axons to the spindles innervated either the dynamic bag1 fiber or the static bag2 and/or chain fibers. Sixteen percent of the gamma axons coinnervated the dynamic and static intrafusal fibers. Some of these nonselective axons were branches of effernts that also gave rise to axons selective to either the dynamic or static types of intrafusal fibers in one or more spindles. Thus activation of individual stem gamma efferents might not have a purely dynamic or purely static effect on the integrated afferent outflow from spindles of a hindlimb muscles in the rat. In addition, primary afferents in all muscles had terminations that cross-innervated the dynamic bag1 and static bag1 and/or chain intrafusal fibers in individual spindles, an arrangement that may enhance the mixed dynamic/static behavior of afferents when different intrafusal fibers are activated concurrent. Spindles of the slow SOL and fast EDL muscles had similar features, whereas differences were observed in the organization of the proximal (SOL and EDL) and distal (LUM) muscles. Spindles in LUM muscles had fewer static intrafusal fibers, a higher ratio of dynamic to static gamma axons, and a higher incidence of skeletofusimotor (beta) innervation to intrafusal fibers than spindles in the SOL or EDL muscles. Thus, the relative contribution of dynamic and static systems to muscle afferent outflow may differ among spindles located in different segments of the rat hindlimb. However, the dynamic and static intrafusal systems of spindle were less sharply demarcated in each of the three hindlimb rat muscles than in the cat tenuissimus muscle.  相似文献   

6.
The authors tested the hypothesis that, after denervation and reinnervation of skeletal muscle, observed deficits in specific force can be completely attributed to the presence of denervated muscle fibers. The peroneal nerve innervating the extensor digitorum longus muscle in rats was sectioned and the distal stump was coapted to the proximal stump, allowing either a large number of motor axons (nonreduced, n = 12) or a drastically reduced number of axons access to the distal nerve stump (drastically reduced, n = 18). A control group of rats underwent exposure of the peroneal nerve, without transection, followed by wound closure (control, n = 9). Four months after the operation, the maximum tetanic isometric force (Fo) of the extensor digitorum longus muscle was measured in situ and the specific force (sFo) was calculated. Cross-sections of the muscles were labeled for neural cell adhesion molecule (NCAM) protein to distinguish between innervated and denervated muscle fibers. Compared with extensor digitorum longus muscles from rats in the control (295 +/- 11 kN/m2) and nonreduced (276 +/- 12 kN/m2) groups, sFo of the extensor digitorum longus muscles from animals in the drastically reduced group was decreased (227 +/- 15 kN/m2, p < 0.05). The percentage of denervated muscle fibers in the extensor digitorum longus muscles from animals in the drastically reduced group (18 +/- 3 percent) was significantly higher than in the control (3 +/- 1 percent) group, but not compared with the nonreduced (9 +/- 2 percent) group. After exclusion of the denervated fibers, sFo did not differ between extensor digitorum longus muscles from animals in the drastically reduced (270 +/- 20 kN/m2), nonreduced (301 +/- 13 kN/m2), or control (303 +/- 10 kN/m2) groups. The authors conclude that, under circumstances of denervation and rapid reinnervation, the decrease in sFo of muscle can be attributed to the presence of denervated muscle fibers.  相似文献   

7.
Recent investigations of proprioreceptors in the walking systems of cats, insects and crustaceans have identified reflex pathways that regulate the timing of the transition from stance to swing, and control the magnitude of ongoing motoneuronal activity. An important finding in the cat is that during locomotor activity, the influence of feedback from the Golgi tendon organs in extensor muscles onto extensor motoneurons is reversed from inhibition to excitation. The excitatory action of tendon organs during stance ensures that stance is maintained while extensor muscles are loaded, and may regulate the magnitude of extensor activity according to the load carried by the leg. Afferents from primary and secondary spindles in extensor and flexor muscles have also been found to influence the timing of the locomotor rhythm in a functionally relevant manner. Recent studies indicate that reflex reversals and the regulation of timing by multiple proprioceptive systems are also features of walking systems in arthropods.  相似文献   

8.
A scheme was developed to classify muscles according to their primary, secondary and tertiary functions, e.g. a muscle which produces primarily a flexion moment may also produce secondary abduction and tertiary internal rotation moments. The functions of muscles crossing the hip and knee joints were computed based upon the changing relative positions of joint centers and muscle origins and insertions during one gait cycle. The function of several of the major muscles crossing the hip and knee joints is reported for the different limb positions corresponding to normal gait. It was found that the amount of force necessary to produce a given moment about a joint was dependent upon the limb position. In addition, the muscle functions changed significantly with limb position. Electrical stimulation of muscles of a paralyzed subject gave qualitative support to the results.  相似文献   

9.
The functional design of spine muscles in part dictates their role in moving, loading, and stabilizing the lumbar spine. There have been numerous studies that have examined the isolated properties of these individual muscles. Understanding how these muscles interact and work together, necessary for the prediction of muscle function, spine loading, and stability, is lacking. The objective of this study was to measure sarcomere lengths of lumbar muscles in a neutral cadaveric position and predict the sarcomere operating ranges of these muscles throughout full ranges of spine movements. Sarcomere lengths of seven lumbar muscles in each of seven cadaveric donors were measured using laser diffraction. Using published anatomical coordinate data, superior muscle attachment sites were rotated about each intervertebral joint and the total change in muscle length was used to predict sarcomere length operating ranges. The extensor muscles had short sarcomere lengths in a neutral spine posture and there were no statistically significant differences between extensor muscles. The quadratus lumborum was the only muscle with sarcomere lengths that were optimal for force production in a neutral spine position, and the psoas muscles had the longest lengths in this position. During modeled flexion the extensor, quadratus lumborum, and intertransversarii muscles lengthened so that all muscles operated in the approximate same location on the descending limb of the force-length relationship. The intrinsic properties of lumbar muscles are designed to complement each other. The extensor muscles are all designed to produce maximum force in a mid-flexed posture, and all muscles are designed to operate at similar locations of the force-length relationship at full spine flexion.  相似文献   

10.
The object of this study was to obtain the anatomic and morphometric data required for biomechanical analyses of the forelimb in dogs. Following the euthanasia of four healthy, adult, crossbred dogs, 44 muscles of the right forelimb were identified and meticulously removed. Morphometric data for all muscles were collected and physiologic cross-sectional areas (PCSA) and architectural indices (AI) were calculated. The coordinates of the origin and insertion of each muscle were determined using orthogonal, right-handed coordinate systems embedded in the scapula, humerus, and radius-ulna. The PCSA and AI were calculated for all the muscles and coordinates for the origins and insertions of these muscles were determined. Results provide the morphometric and anatomic data necessary for three-dimensional biomechanical studies of the forelimb in dogs.  相似文献   

11.
The phenotypic differences among Duchenne muscular dystrophy patients, mdx mice, and mdx5cv mice suggest that despite the common etiology of dystrophin deficiency, secondary mechanisms have a substantial influence on phenotypic severity. The differential response of various skeletal muscles to dystrophin deficiency supports this hypothesis. To explore these differences, gene expression profiles were generated from duplicate RNA targets extracted from six different skeletal muscles (diaphragm, soleus, gastrocnemius, quadriceps, tibialis anterior, and extensor digitorum longus) from wild-type, mdx, and mdx5cv mice, resulting in 36 data sets for 18 muscle samples. The data sets were compared in three different ways: (1) among wild-type samples only, (2) among all 36 data sets, and (3) between strains for each muscle type. The molecular profiles of soleus and diaphragm separate significantly from the other four muscle types and from each other. Fiber-type proportions can explain some of these differences. These variations in wild-type gene expression profiles may also reflect biomechanical differences known to exist among skeletal muscles. Further exploration of the genes that most distinguish these muscles may help explain the origins of the biomechanical differences and the reasons why some muscles are more resistant than others to dystrophin deficiency. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Judith N. Haslett, Peter B. Kang These authors contributed equally to this work.  相似文献   

12.
13.
The activities of five enzymes have been studied quantitatively in denervated extensor digitorum longus, gastrocnemius and soleus muscles of 24-month-old rats. The results have been compared with those obtained from normal muscles of a similar age group of rats. Three weeks after denervation, the activity of hexokinase was increased in gastrocnemius and extensor digitorum longus. Phosphofructokinase, lactate dehydrogenase, malate dehydrogenase and 3-hydroxyacyl-CoA-dehydrogenase showed decreased activities. These results suggest that enzyme which represents glucose uptake increased its activity in fast muscles and that enzymes for anaerobic glycolysis, lactate fermentation, citric acid cycle and beta-oxidation had a decreased activity in slow and fast muscles.  相似文献   

14.
Rats fed a restricted diet during gestation and lactation gave birth to pups with about 60% the normal birthweight. Maintaining the undernutrition after birth reduced the rate of growth of the pups so that their body weights were only 40% of control at PN7. Soleus and lumbrical muscles in these animals had reduced numbers of muscle fibres, and quantitative examination of embryonic muscles revealed that this was due solely to a decreased formation of secondary myotubes; the number of primary myotubes remained normal. Undernutrition did not affect the number of motoneurones surviving normal developmental death. Restoration of normal dietary intake on E21, one day before birth, did not correct the deficit in muscle fibre numbers in soleus muscles examined when the animals reached one month of age. Development of the lumbrical muscle lags behind the soleus and unrestricted feeding from E21 onwards allowed a normal number of fibres to develop from this time on, although the initial deficit was never restored. These experiments define a critical period in muscle development during which the potential maximum number of secondary myotubes is determined.  相似文献   

15.
The process of neuromuscular synapse elimination has been studied in the fourth deep lumbrical (4DL) muscle of the rat, a preparation which offers technical advantages for some types of experimental work. Studies have been performed both during development and in adult denervated muscles undergoing reinnervation. Results indicate that synapse elimination is dependent upon competition between motoneurons. Cellular mechanisms underlying this competition have also been explored. Both neuromuscular activity and muscle fiber type recognition appear to play a role, but positional cues appear unimportant in this small muscle.  相似文献   

16.
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.  相似文献   

17.
The metabolic integrity of fully regenerated transplants was investigated by measuring induced changes in glycogen concentration. The extensor digitorum longus and the soleus muscles were cross transplanted: the extensor digitorum longus into the soleus muscle bed (SOLT) and the soleus muscle into the extensor digitorum longus bed (EDLT). The histochemical fiber type distribution of the regenerated muscles was determined and was found to transform in cross-transplanted EDLT and SOLT. After transplantation and regeneration, both muscles had initially low glycogen concentrations. However, the EDLT glycogen concentration was not significantly different from that of the contralateral extensor digitorum longus control muscle after 60 days. In the SOLT, glycogen gradually increased but remained less than in the contralateral soleus control muscle. SOLT and control soleus muscles responded with a significant glycogen depletion to an epinephrine dose two orders of magnitude less than the lowest dose affecting glycogen levels in EDLT and extensor digitorum longus muscles. These results indicate that transplanted muscles are capable of regenerating normal glycogenolytic responses and that the sensitivity of the response observed depends on the site of transplantation and is related to the type of innervation and histochemical fiber type.  相似文献   

18.
The Dendrocolaptinae (woodcreepers), a clade of neotropical passerine birds, form an adaptive radiation with a spectrum of body sizes and bill shapes. Woodcreepers are scansorial, climbing vertical tree trunks supported by their forward toes and stiffened tail. The hindlimb musculature was dissected and described for 42 of the 50 species representing all genera, and for 14 outgroup species. Structural, functional, developmental and evolutionary aspects of muscular variations are analysed. Woodcreepers have extensive ossification of leg tendons. There is intraspecific variation in the degree of ossification, and interspecific variation in the occurrence of ossification between muscles. Intraspecific variation in muscle structure was apportioned according to a published classification. Nine muscles showed variation of the minor, singular, mimicking and incongruous types, but explosive variation was lacking. Some muscles are more prone to variation than others. Ten muscles showed interspecific variations of four types, for which new terms are proposed: occurrence variations; attachment variations in origins and insertions; structural variations in size, shape, or fibre arrangement; and relational variations with other muscles. Variations in the presence of a muscle component did not occur. Discrimination of intraspecific variations from interspecific variations is discussed.  相似文献   

19.
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin. Dystrophin's function is not known, but its cellular location and associations with both the force-generating contractile core and membrane-spanning entities suggest a role in mechanically coupling force from its intracellular origins to the fiber membrane and beyond. We report here the presence of destructive contractile activity in lumbrical muscles from dystrophin-deficient (mdx) mice during nominally quiescent periods following exposure to mechanical stress. The ectopic activity, which was observable microscopically, resulted in longitudinal separation and clotting of fiber myoplasm and was absent when calcium (Ca(2+)) was removed from the bathing medium. Separation and clotting of myoplasm were also produced in dystrophin-deficient muscles by local application of a Ca(2+) ionophore to create membrane breaches in the absence of mechanical stress, whereas muscles from control mice tolerated ionophore-induced entry of Ca(2+) without damage. These observations suggest a failure cascade in dystrophin-deficient fibers that 1) is initiated by a stress-induced influx of extracellular Ca(2+), causing localized activation to continue after cessation of stimulation, and 2) proceeds as the persistent local activation, combined with reduced lateral mechanical coupling between the contractile core and the extracellular matrix, results in longitudinal separation of myoplasm in nonactivated regions of the fiber. This mechanism invokes both the membrane stabilization and the mechanical coupling functions frequently proposed for dystrophin and suggests that, whereas the absence of either function alone is not sufficient to cause fiber failure, their combined absence is catastrophic.  相似文献   

20.
The generation and development of muscle cells in the IVth hindlimb lumbrical muscle of the rat was studied following total or partial denervation. Denervation was carried out by injection of beta-bungarotoxin (beta-BTX), a neurotoxin which binds to and destroys peripheral nerves. Primary myotubes were generated in denervated muscles and reached their normal stable number on embryonic day 17 (E17). This number was not maintained and denervated muscles examined on E19 or E21 contained many degenerating primary myotubes. Embryos injected with beta-bungarotoxin (beta-BTX) on E12 or E13 suffered a partial loss of motoneurones, resulting in a reduced number of axons in the L4 ventral root (the IVth lumbrical muscle is supplied by axons in L4, L5 and L6 ventral roots) and reduced numbers of nerve terminals in the intrinsic muscles of the hindfoot. Twitch tension measurements showed that all myotubes in partly innervated muscles examined on E21 contracted in response to nerve stimulation. Primary myotubes were formed and maintained at normal numbers in muscles with innervation reduced throughout development, but a diminished number of secondary myotubes formed by E21. The latter was correlated with a reduction in number of mononucleate cells within the muscles. If beta-BTX was injected on E18 to denervate muscles after primary myotube formation was complete, E21 embryo muscles contained degenerating primary myotubes. After injection to denervate muscles on E19, the day secondary myotubes begin to form, E21 muscles possessed normal numbers of primary myotubes. In both cases, secondary myotube formation had stopped about 1 day after the injection and the number of mononucleate cells was greatly reduced, indicating that cessation of secondary myotube generation was most probably due to exhaustion of the supply of competent myoblasts. We conclude that nerve terminals regulate the number of secondary myotubes by stimulating mitosis in a nerve-dependent population of myoblasts and that activation of these myoblasts requires the physical presence of nerve terminals as well as activation of contraction in primary myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号