首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用有机磷类杀虫剂(敌敌畏、毒死蜱、对氧磷)和氨基甲酸酯类杀虫剂(丁硫克百威),通过生物测定(药膜法)和生化测定(比色法)比较了嗜卷书虱和嗜虫书虱对所选药剂的敏感差异性。根据LC50可知嗜虫书虱对所选药剂比嗜卷书虱敏感。离体酶活性分析结果显示嗜卷书虱和嗜虫书虱的羧酸酯酶只对敌敌畏敏感,且嗜卷书虱比嗜虫书虱更敏感;4种药剂对乙酰胆碱酯酶均有强烈的抑制作用,同样是嗜卷书虱比嗜虫书虱敏感。乙酰胆碱酯酶的动力学研究结果和离体酶活性测定相一致。聚丙烯酰胺凝胶电泳分析显示,4种杀虫剂离体条件下对2种书虱的酯酶同工酶的抑制能力有明显差异,其中敌敌畏的抑制力最强;但对不同同功酶的抑制趋势(对大分子的抑制似乎较强)是一致的。酶的敏感性分析结果与生测结果比较表明,2种书虱的耐药力差异与其乙酰胆碱酯酶和酯酶对药剂的敏感性无关。如要弄清耐药力机制,需做进一步研究。  相似文献   

2.
Abstract: The toxicological and biochemical characteristics of glutathione S‐transferases (GSTs) in the resistant and susceptible strains of Liposcelis bostrychophila were investigated. The two resistant strains were the dichlorvos‐resistant strain (DDVP‐R) and PH3‐resistant strain (PH3‐R), and the resistance factors were 22.36 and 4.51, respectively. Compared with their susceptible counterparts, the activities per insect and specific activities of GSTs in DDVP‐R and PH3‐R were significantly higher. The apparent Michaelis–Menten constant values (Km) for 1‐chloro‐2,4‐dinitrobenzene (CDNB) were obviously lower in DDVP‐R and PH3‐R (i.e. lower Km values, 1.5625 mm for DDVP‐R and 0.6230 mm for PH3‐R) when compared with their susceptible counterpart (Km = 3.5520), indicating a higher affinity to the substrate CDNB in resistant strains. In contrast, the catalytic activity of GSTs towards CDNB in the susceptible strain was significantly higher than those in resistant strains. It was noticeable that when reduced glutathione (GSH) was used as substrate, GSTs from resistant strains both indicated a significantly declined affinity. For the catalytic activity of GSTs towards GSH, only the Vmax value in DDVP‐R increased significantly compared with that from the susceptible strain, suggesting an overexpression of GST in this resistant strain. The inhibition kinetics of insecticides to GSTs in vitro revealed that dichlorvos and paraoxon possessed excellent inhibition effects on GSTs. The susceptible strain showed higher sensitivity (I50 = 0.9004 mm ) to dichlorvos than DDVP‐R and PH3‐R (higher I50s, 8.0955 mm for DDVP‐R and 9.3346 mm for PH3‐R). As for paraoxon, there was a similar situation. The resistant strains both suggested a higher I50 (1.8735 mm for DDVP‐R, and 0.4291 mm for PH3‐R) compared with the susceptible strain (0.2943 mm ). These suggested that an elevated detoxification ability of GSTs developed in the resistant strains.  相似文献   

3.

Background

The genus Liposcelis (Psocoptera: Troctomorpha) has more than 120 species with a worldwide distribution and they pose a risk for global food security. The organization of mitochondrial (mt) genomes varies between the two species of booklice investigated in the genus Liposcelis. Liposcelis decolor has its mt genes on a single chromosome, like most other insects; L. bostrychophila, however, has a multipartite mt genome with genes on two chromosomes.

Results

To understand how multipartite mt genome organization evolved in the genus Liposcelis, we sequenced the mt genomes of L. entomophila and L. paeta in this study. We found that these two species of booklice also have multipartite mt genomes, like L. bostrychophila, with the mt genes we identified on two chromosomes. Numerous pseudo mt genes and non-coding regions were found in the mt genomes of these two booklice, and account for 30% and 10% respectively of the entire length we sequenced. In L. bostrychophila, the mt genes are distributed approximately equally between the two chromosomes. In L. entomophila and L. paeta, however, one mt chromosome has most of the genes we identified whereas the other chromosome has largely pseudogenes and non-coding regions. L. entomophila and L. paeta differ substantially from each other and from L. bostrychophila in gene content and gene arrangement in their mt chromosomes.

Conclusions

Our results indicate unusually fast evolution in mt genome organization in the booklice of the genus Liposcelis, and reveal different patterns of mt genome fragmentation among L. bostrychophila, L. entomophila and L. paeta.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-861) contains supplementary material, which is available to authorized users.  相似文献   

4.
Acetylcholinesterace (AChE) is known to be the major target for organophophate and carbamate insecticides and biomolecular changes to AChE have been demonstrated to be an important mechanism for insecticide resistance in many insect species. In this study, AChE from three field populations of Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae) was purified by affinity chromatography and subsequently characterized by its Michaelis‐Menten kinetics to determine if detectable changes to AChE have occurred. Bioassays revealed that the potential resistance threat of psocids in Sichuan Province (GH) was greater than either Hubei Province (WH) or Chongqing Municipality (BB). Compared to the other two populations, the WH population possessed the highest specific activity of purified AChE. Kinetic analyses indicated that the purified AChE from GH population expressed a significantly lower affinity to the substrate and a higher catalytic activity toward acetylthiocholine iodide (ATChI) (i.e., higher Km and Vmax values) than BB and WH populations. In vitro studies of AChE suggest that five inhibitors (aldicarb, eserine, BW284C51, omethoate, and propoxur) all possess strong inhibitory effects with eserine having the strongest inhibitory effect against purified AChE. According to bimolecular rate constants (ki), the purified AChE from GH population was least sensitive to all inhibitors except for omethoate. The differences in AChE among the three populations may be partially attributed to the differences in pesticide application and control practices for psocids among the three locations. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Two nicotinic acetylcholine receptor (nAChR) subunit genes, Lbα1 and Lbα8, were isolated and characterized from psocid, Liposcelis bostrychophila Badonnel, using the rapid amplification of cDNA ends (RACE) technique. They are the first two nAChR family members isolated from the insect order of Psocoptera. The full‐length cDNAs of Lbα1 (GenBank accession number: EU871527) and Lbα8 (EU871526) consist of 2,025 and 1,763 nucleotides, respectively, and an open reading frame of 1,644 and 1,608 bp encoding 547 and 535 amino acid proteins, respectively. Both genes have typical features of nAChR family members, though they share only 56% identity in amino acid sequence. The dendrogram generated by the MEGA 3.1 program shows that the protein deduced by Lbα1 had the closest phylogenetic relationship to Agamα1 from Anopheles gambiae and Amelα1 from Apis mellifera, and Lbα8 shares the highest identity with Agamα8 from An. gambiae and Amelα8 from A. mellifera. Quantitative real‐time PCR analysis showed that Lbα1 was expressed 2.03–6.54‐fold higher than Lbα8 at the different developmental stages of L. bostrychophila. The highest expression levels of Lbα1 and Lbα8 were both detected at adult stage and the lowest were at the third and fourth nymphal stages, respectively. There was a stable and relatively low expression level for Lbα1, whereas there was a descending expression pattern for Lbα8 in the 1st through the 4th nymphal stadia. © 2009 Wiley Periodicals Inc.  相似文献   

6.
Abstract Adults of the psocid Liposcelis bostrychophila were exposed to an atmosphere containing 35% CO2 and 1% O2 for 30 successive generations at 28 C and 70%–80% RH in order to select a resistant strain to controlled atmosphere (CA). At the 30th generation the resistance factor (LT50 for selected generation / LT50 for non-selected generation) reached to 5. 6-folds. The results of biochemical assays showed that the activities of carboxylesterase (CarE) and superoxide dismutase (SOD) in vitro increased considerably from generation to generation during the selection process, and they were closely correlated with the resistance levels. At the 30th generation, the CarE and SOD activities in the resistant strain to CA (CA-R) were 4. 06-and 5. 22-folds as much as those in the susceptible strain to CA (CA-S), respectively. Exposure to CA resulted in decrease in CarE activity; however, the decreasing range for CA-S was significantly greater than that for CA-R. CA had induction effect on SOD within short time, but for CA-R the induction time was longer and activity induced was higher than CA-S. Catalase (CAT) activity was also raised with the resistance development, but no statistical relationship was found between CAT activity and CA resistance. No significant difference of both acid phosphatase (ACP) and alkaline phosphatase (ALP) was found in CA-R and CA-S during the selection process. Peroxidase (POD) activity was not detected in L. bostrychophila. These suggest that the major mechanism responsible for CA resistance appears to be the enhanced CarE and SOD activities, and probably CAT plays an additionary role to adopt low O2 concentration in CA resistance.  相似文献   

7.
Wei DD  Yuan ML  Wang BJ  Zhou AW  Dou W  Wang JJ 《PloS one》2012,7(3):e33883

Background

The psocids Liposcelis bostrychophila and L. entomophila (Psocoptera: Liposcelididae) are found throughout the world and are often associated with humans, food stores and habitations. These insects have developed high levels of resistance to various insecticides in grain storage systems. However, the population genetic structure and gene flow of psocids has not been well categorized, which is helpful to plan appropriate strategies for the control of these pests.

Methodology/Principal Findings

The two species were sampled from 15 localities in China and analyzed for polymorphisms at the mitochondrial DNA (Cytb) and ITS (ITS1-5.8S-ITS2) regions. In total, 177 individual L. bostrychophila and 272 individual L. entomophila were analysed. Both Cytb and ITS sequences showed high genetic diversity for the two species with haplotype diversities ranged from 0.154±0.126 to 1.000±0.045, and significant population differentiation (mean F ST = 0.358 for L. bostrychophila; mean F ST = 0.336 for L. entomophila) was also detected among populations investigated. A Mantel test indicated that for both species there was no evidence for isolation-by-distance (IBD). The neutrality test and mismatch distribution statistics revealed that the two species might have undergone population expansions in the past.

Conclusion

Both L. bostrychophila and L. entomophila displayed high genetic diversity and widespread population genetic differentiation within and between populations. The significant population differentiation detected for both psocids may be mainly due to other factors, such as genetic drift, inbreeding or control practices, and less by geographic distance since an IBD effect was not found.  相似文献   

8.
采用不同浓度的草甘膦0.41 g/L、0.82 g/L、1.23 g/L、1.64g/L、2.05 g/L分别以胃毒和触杀法处理空心莲子草叶甲Agasicles hygrophila成虫,测定其乙酰胆碱酯酶(AChE)、羧酸酯酶(CarE)和谷胱甘肽S-转移酶(GSTs)比活力.试验结果表明:两种处理,草甘膦对AChE活力均有不同程度的抑制作用;对CarE活力影响较为显著,在2.05 g/L浓度下,胃毒处理CarE对α-乙酸萘酯(α-NA)和β-乙酸萘酯(β-NA)水解能力分别是对照组的50%和57%,触杀处理CarE对α-乙酸萘酯(α-NA)和β-乙酸荼酯(β-NA)水解能力分别是对照组的53%和59%;胃毒处理埘酶活力影响大于触杀处理,草甘膦对GSTs的活力影响不明显.  相似文献   

9.
The control program of codling moth (Cydia pomonella L.) in the Río Negro and Neuquén Valley is intended to neonate larvae. However, adults may be subjected to sublethal pesticide concentrations generating stress which might enhance both mutation rates and activity of the detoxification system. This study assessed the exposure effects of chlorpyrifos on target enzyme and, both detoxifying and antioxidant systems of surviving adults from both a laboratory susceptible strain (LSS) and a field population (FP). The results showed that the FP was as susceptible to chlorpyrifos as the LSS and, both exhibited a similar chlorpyrifos‐inhibitory concentration 50 (IC50) of acetylcholinesterase (AChE). The FP displayed higher carboxylesterase (CarE) and 7‐ethoxycoumarine O‐deethylase (ECOD) activities than LSS. Both LSS and FP showed an increase on CarE activity after the exposure to low‐chlorpyrifos concentrations, followed by enzyme inhibition at higher concentrations. There were no significant differences neither in the activities of glutathione S‐transferases (GST), catalase (CAT) and superoxide dismutase (SOD) nor in the reduced glutathione (GSH) content between LSS and FP. Moreover, these enzymes were unaffected by chlorpyrifos. In conclusion, control adults from the FP exhibited higher CarE and ECOD activities than control adults from the LSS. AChE and CarE activities were the most affected by chlorpyrifos. Control strategies used for C. pomonella, such as rotations of insecticides with different modes of action, will probably delay the evolution of insecticide resistance in FPs from the study area.  相似文献   

10.
通过测定赤眼蜂Trichogramma羧酸酯酶和乙酰胆碱酯酶的活性、对底物的亲和力以及对抑制剂的敏感度研究了繁殖寄主对松毛虫赤眼蜂T.dendrolimi和螟黄赤眼蜂T.chilonis的影响。柞蚕卵和米蛾卵繁殖的赤眼蜂羧酸酯酶对底物的亲和力有不同程度的影响,柞蚕卵繁殖的赤眼蜂羧酸酯酶对α-乙酸萘酯或β-乙酸萘酯的亲和力最高是米蛾卵的2倍以上。繁殖寄主对乙酰胆碱酯酶对底物亲和力没有明显的影响。米蛾卵繁殖的松毛虫赤眼蜂羧酸酯酶活性明显高于柞蚕卵繁殖的种群,而米蛾卵繁殖的螟黄赤眼蜂种群羧酸酯酶的活性明显低于柞蚕卵繁殖的种群。用柞蚕卵繁殖的松毛虫赤眼蜂种群对对氧磷的敏感度明显低于米蛾卵繁殖的种群,而增效磷则正好相反。繁殖寄主对松毛虫赤眼蜂吉林种群乙酰胆碱酯酶对DDVP和毒扁豆碱的敏感度没有明显的影响,而在松毛虫赤眼蜂广东种群和螟黄赤眼蜂中,柞蚕卵繁殖的种群乙酰胆碱酯酶对DDVP和毒扁豆碱的敏感度明显低于米蛾卵繁殖的种群。  相似文献   

11.
12.
Toxicity of four insecticides commonly used in rice pest management, chlorpyrifos, dimethoate, carbaryl and carbosulfan, to the fry of common carp was assessed through median lethal concentrations (LC50) and in vivo inhibition of the brain acetylcholinesterase (AChE) enzyme at sublethal concentrations. The 96‐h LC50 values for these four insecticides were determined to be 0.008, 26.11, 7.85 and 0.60 mg L?1 respectively. Exposure of fish to a series of sublethal concentrations (0.5–5% LC50) of each insecticide for 14 days resulted in concentration‐dependent inhibition in AChE activity in comparison with the controls. AChE activity was greatly inhibited in the fish exposed to sublethal concentrations of chlorpyrifos. Upon transfer to insecticide‐free water, AChE activities in fry exposed to 0.5 and 1% LC50 concentrations of carbaryl and carbosulfan were restored to the control level within 7–21 days whereas the fish exposed to chlorpyrifos or dimethoate did not fully recover from the insecticide‐induced anticholinesterase action. Of the four insecticides tested, chlorpyrifos was the most toxic for the fry of common carp. Although dimethoate was least toxic for the fish under acute exposure, the restoration level of normal AChE activity was slower under chronic exposure in comparison with carbaryl and carbosulfan. Hence, the use of carbamates, especially carbaryl, to control insect pests of rice in rice‐cum‐carp culture systems is recommended when considering survival, restoration of the normal AChE activity and stamina of the cultured fish.  相似文献   

13.
Methyl jasmonate (MeJA)‐mediated defense in conventional cotton, Gossypium hirsutum L. (Malvaceae), against cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was investigated with respect to the activities of the detoxification enzymes acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S‐transferases (GST) in pupae as well as the performance of larvae. The results suggested that exogenous application of MeJA to cotton leaves depressed the activities of AChE, CarE, and GST of cotton bollworm pupae. Both the absolute and protein‐specific AChE activities of pupae were depressed at all three MeJA concentrations applied as compared with a control, and the effects of 0.4 mM MeJA were significantly higher than those of 0.1 and 0.2 mM. A marked reduction in absolute CarE activity was observed at the 0.4 mM MeJA treatment, whereas the protein‐specific activity was increased by 0.2 and 0.4 mM. Absolute GST activity was significantly depressed only by the 0.4 mM MeJA treatment, whereas protein‐specific GST activity was not markedly affected by MeJA. Protein content of pupae was reduced by 0.4 mM MeJA‐induced defense in cotton leaves. The development time of larvae was protracted and pupal weight was reduced by 0.1 and 0.4 mM MeJA‐treated cotton leaves. Larval weight gain was inhibited significantly on 0.2 and 0.4 mM MeJA‐treated cotton leaves. The results suggested that MeJA‐induced plant defense may have adverse effects on H. armigera. In addition to the inhibition of growth and development, induced defense may also impair the insect's ability to detoxify toxic plant secondary metabolites.  相似文献   

14.
Human carbonic anhydrase I and II isoenzymes (hCA I and II) and acetylcholinesterase (AChE) are important metabolic enzymes that are closely associated with various physiological and pathological processes. In this study, we investigated the inhibition effects of some sulfonamides on hCA I, hCA II, and AChE enzymes. Both hCA isoenzymes were purified by Sepharose‐4B‐L‐Tyrosine‐5‐amino‐2‐methylbenzenesulfonamide affinity column chromatography with 1393.44 and 1223.09‐folds, respectively. Also, some inhibition parameters including IC50 and Ki values were determined. Sulfonamide compounds showed IC 50 values of in the range of 55.14 to 562.62 nM against hCA I, 55.99 to 261.96 nM against hCA II, and 98.65 to 283.31 nM against AChE. Ki values were in the range of 23.40 ± 9.10 to 365.35 ± 24.42 nM against hCA I, 45.87 ± 5.04 to 230.08 ± 92.23 nM against hCA II, and 16.00 ± 45.53 to 157.00 ± 4.02 nM against AChE. As a result, sulfonamides had potent inhibition effects on these enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some disorders.  相似文献   

15.
We evaluated the competition among stored-product psocid species by conducting two series of laboratory experiments. In the first series, three species of Liposcelididae were used: Liposcelis bostrychophila, Liposcelis decolor, and Liposcelis paeta. Five adult females of these species were placed in vials containing wheat, either alone or in all possible combinations of two species. The number of adults in the vials was counted after 35, 70, 105, 140, and 175 days. These tests were performed at 25 and 30°C. At 25°C, there were no differences in numbers of L. bostrychophila when this species was reared either alone or with each of the other two species. At 30°C, L. bostrychophila was the dominant species. The presence of L. bostrychophila had a negative effect on the growth of populations of L. decolor and L. paeta. The presence of L. paeta did not affect growth of populations of L. decolor, although the presence of L. decolor occasionally reduced growth of populations of L. paeta. In the second series of tests, L. bostrychophila adult females were placed in vials of wheat either alone or with adult females of Lepinotus reticulatus, at the ratios of (L. bostrychophila: L. reticulatus) 10∶0, 9∶1, 7∶3, 5∶5, 3∶7, 1∶9, and 0∶10. These tests were carried out only at 30°C, and the observation periods were the same as for the first series of tests. Liposcelis bostrychophila was the dominant species in this case as well, regardless of the ratio of the parental females. At the end of the experimental period, L. reticulatus was present only in vials that contained this species alone. Our results showed that L. bostrychophila outcompetes the other stored-product psocid species tested.  相似文献   

16.
During our screening program for new agrochemicals from traditional medicinal herbs, Dictamnus dasycarpus was found to possess contact toxicity and repellent activity against the cigarette beetle Lasioderma serricorne and the booklouse Liposcelis bostrychophila. The essential oil obtained by hydrodistillation of D. dasycarpus roots was characterized by GC‐FID and GC/MS analyses, and the main components identified were syn‐7‐hydroxy‐7‐anisylnorbornene ( 1 , 49.9%), 1,3,4,5,6,7‐hexahydro‐2H‐inden‐2‐one ( 2 , 11.6%), 5,6‐diethenyl‐1‐methylcyclohexene ( 3 , 7.4%), and 3,9‐dimethyltricyclo[4.2.1.12,5]dec‐3‐en‐9‐ol ( 4 , 6.35%). The D. dasycarpus root oil exhibited strong contact toxicity against L. serricorne adults and L. bostrychophila, with LD50 values of 12.4 μg/adult and 27.2 μg/cm2, respectively. Moreover, the essential oil also showed strong repellency against both stored‐product insects tested.  相似文献   

17.
Liposcelis bostrychophila (Psocoptera: Liposcelidae) is a widely distributed pest that can cause considerable economic losses and pose human health risks. Rapid development of insecticide resistance has made L. bostrychophila increasingly difficult to control. To obtain information potentially useful for pest management, genetic diversity and differentiation of L. bostrychophila from five geographic locations in China was studied using inter-simple sequence repeat (ISSR). A total of 104 loci were found by ISSR markers and amplified using 9 selected primers. The percentage of polymorphic bands (PPB) was 91.4%. Shannon’s information index (I) and Nei’s gene diversity (He) indicated high genetic diversity at the species level. Population differentiation (Gst = 0.484) was average in these populations. Analysis of molecular variation (AMOVA) indicated that genetic variation was mainly distributed within populations. Gene flow (Nm = 0.534) was moderate. Cluster analysis showed that genotypes isolated from the same locations displayed higher genetic similarity and permitted the grouping of isolates of L. bostrychophila into three distinct clusters. The correlation between genetic distance and geographic distance was not significant.  相似文献   

18.
19.
Acetylcholinesterases (AChEs) and their genes from susceptible and resistant insects have been extensively studied to understand the molecular basis of target site insensitivity. Due to the existence of other resistance mechanisms, however, it can be problematic to correlate directly a mutation with the resistant phenotype. An alternative approach involves recombinant expression and characterization of highly purified wild-type and mutant AChEs, which serves as a reliable platform for studying structure–function relationships. We expressed the catalytic domain of Anopheles gambiae AChE1 (r-AgAChE1) using the baculovirus system and purified it 2,500-fold from the conditioned medium to near homogeneity. While KM's of r-AgAChE1 were comparable for ATC, AβMTC, PTC, and BTC, Vmax's were substantially different. The IC50's for eserine, carbaryl, paraoxon, BW284C51, malaoxon, and ethopropazine were 8.3, 72.5, 83.6, 199, 328, and 6.59 × 104 nM, respectively. We determined kinetic constants for inhibition of r-AgAChE1 by four of these compounds. The enzyme bound eserine or paraoxon stronger than carbaryl or malaoxon. Because the covalent modification of r-AgAChE1 by eserine occurred faster than that by the other compounds, eserine is more potent than paraoxon, carbaryl, and malaoxon. Furthermore, we found that choline inhibited r-AgAChE1, a phenomenon related to the enzyme activity decrease at high concentrations of acetylcholine.  相似文献   

20.
Complementary DNAs encoding two types of acetylcholinesterase (ACHE) were isolated from the silkworm, Bombyx mori. The type 1 (Bmacel) and type 2 (Bmace2) ORFs are 2052 and 1917 bp in length, respectively. Both the complete ORFs of the Bmaces and C- terminal truncated forms were recombined into the Bacmid baculovirus vector under the control of the polyhedrin promoter and expressed in Trichoplusia ni (Tn-5B 1-4) cells. The resulting products exhibited ACHE activity and glycosylation of the expressed proteins. An inhibition assay indicated that the ace2-type enzyme was more sensitive than the acel-type enzyme to inhibition by eserine and paraoxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号