首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptotagmins represent a family of putative vesicular trafficking proteins. With synaptotagmin 13, we have now identified a novel synaptotagmin, making this one of the largest families of trafficking proteins. Similar to synaptotagmins 3, 4, 6, 7, 9, and 11, synaptotagmin 13 is expressed at highest levels in brain but is also detectable at lower levels in non-neuronal tissues. Synaptotagmin 13 is composed of the canonical domains of synaptotagmins that include an N-terminal transmembrane region and two C-terminal cytoplasmic C2-domains (C2A- and C2B-domain) and a connecting sequence between the transmembrane region and the C2-domains. Different from most other synaptotagmins, however, synaptotagmin 13 does not have an N-terminal sequence preceding the transmembrane region, and features an unusually long connecting sequence that is proline-rich. Furthermore, the C2-domains of synaptotagmin are degenerate and lack almost all of the residues involved in Ca2+ binding, suggesting that synaptotagmin 13 is not a Ca2+-binding protein unlike most other synaptotagmins. Our data demonstrate that synaptotagmins represent a larger and more complex gene family than previously envisioned.  相似文献   

2.
Multiple synaptotagmins are expressed in brain, but only synaptotagmins I and II have known functions in fast, synchronous Ca2+-triggered neurotransmitter release. Synaptotagmin III was proposed to regulate other aspects of synaptic vesicle exocytosis, particularly its slow component. Such a function predicts that synaptotagmin III should be an obligatory synaptic vesicle protein, as would also be anticipated from its high homology to synaptotagmins I and II. To test this hypothesis, we studied the distribution, developmental expression, and localization of synaptotagmin III and its closest homolog, synaptotagmin VI. We find that synaptotagmins III and VI are present in all brain regions in heterogeneous distributions and that their levels increase during development in parallel with synaptogenesis. Furthermore, we show by immunocytochemistry that synaptotagmin III is concentrated in synapses, as expected. Surprisingly, however, we observed that synaptotagmin III is highly enriched in synaptic plasma membranes but not in synaptic vesicles. Synaptotagmin VI was also found to be relatively excluded from synaptic vesicles. Our data suggest that synaptotagmins III and VI perform roles in neurons that are not linked to synaptic vesicle exocytosis but to other Ca2+-related nerve terminal events, indicating that the functions of synaptotagmins are more diverse than originally thought.  相似文献   

3.
Synaptotagmin (p65) is an abundant synaptic vesicle protein that contains two copies of a sequence that is homologous to the regulatory region of protein kinase C. Full length cDNAs encoding human and Drosophila synaptotagmins were characterized to study its structural and functional conservation in evolution. The deduced amino acid sequences for human and rat synaptotagmins show 97% identity, whereas Drosophila and rat synaptotagmins are only 57% identical but exhibit a selective conservation of the two internal repeats that are homologous to the regulatory region of protein kinase C (78% invariant residues in all three species). The two internal repeats of synaptotagmin are only slightly more homologous to each other than to protein kinase C, and the differences between the repeats are conserved in evolution, suggesting that they might not be functionally equivalent. The cytoplasmic domains of human and Drosophila synaptotagmins produced as recombinant proteins in Escherichia coli specifically bound phosphatidylserine similar to rat synaptotagmin. They also hemagglutinated trypsinized erythrocytes at nanomolar concentrations. Hemagglutination was inhibited both by negatively charged phospholipids and by a recombinant fragment from rat synaptotagmin that contained only a single copy of the two internal repeats. Together these results demonstrate that synaptotagmin is highly conserved in evolution compatible with a function in the trafficking of synaptic vesicles at the active zone. The similarity of the phospholipid binding properties of the cytoplasmic domains of rat, human, and Drosophila synaptotagmins and the selective conservation of the sequences that are homologous to protein kinase C suggest that these are instrumental in phospholipid binding. The human gene for synaptotagmin was mapped by Southern blot analysis of DNA from somatic cell hybrids to chromosome 12 region cen-q21, and the Drosophila gene by in situ hybridization to 23B.  相似文献   

4.
5.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

6.
Sugita S  Südhof TC 《Biochemistry》2000,39(11):2940-2949
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance.  相似文献   

7.
Secretagogue-induced changes in intracellular Ca(2+) play a pivotal role in secretion in pancreatic acini yet the molecules that respond to Ca(2+) are uncertain. Zymogen granule (ZG) exocytosis is regulated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. In nerve and endocrine cells, Ca(2+)-stimulated exocytosis is regulated by the SNARE-associated family of proteins termed synaptotagmins. This study examined a potential role for synaptotagmins in acinar secretion. RT-PCR revealed that synaptotagmin isoforms 1, 3, 6, and 7 are present in isolated acini. Immunoblotting and immunofluorescence using three different antibodies demonstrated synaptotagmin 1 immunoreactivity in apical cytoplasm and ZG fractions of acini, where it colocalized with vesicle-associated membrane protein 2. Synaptotagmin 3 immunoreactivity was detected in membrane fractions and colocalized with an endolysosomal marker. A potential functional role for synaptotagmin 1 in secretion was indicated by results that introduction of synaptotagmin 1 C2AB domain into permeabilized acini inhibited Ca(2+)-dependent exocytosis by 35%. In contrast, constructs of synaptotagmin 3 had no effect. Confirmation of these findings was achieved by incubating intact acini with an antibody specific to the intraluminal domain of synaptotagmin 1, which is externalized following exocytosis. Externalized synaptotagmin 1 was detected exclusively along the apical membrane. Treatment with CCK-8 (100 pM, 5 min) enhanced immunoreactivity by fourfold, demonstrating that synaptotagmin is inserted into the apical membrane during ZG fusion. Collectively, these data indicate that acini express synaptotagmin 1 and support that it plays a functional role in secretion whereas synaptotagmin 3 has an alternative role in endolysosomal membrane trafficking.  相似文献   

8.
Synaptotagmins constitute a large family of membrane proteins implicated in Ca(2+)-triggered exocytosis. Structurally similar synaptotagmins are differentially localized either to secretory vesicles or to plasma membranes, suggesting distinct functions. Using measurements of the Ca(2+) affinities of synaptotagmin C2-domains in a complex with phospholipids, we now show that different synaptotagmins exhibit distinct Ca(2+) affinities, with plasma membrane synaptotagmins binding Ca(2+) with a 5- to 10-fold higher affinity than vesicular synaptotagmins. To test whether these differences in Ca(2+) affinities are functionally important, we examined the effects of synaptotagmin C2-domains on Ca(2+)-triggered exocytosis in permeabilized PC12 cells. A precise correlation was observed between the apparent Ca(2+) affinities of synaptotagmins in the presence of phospholipids and their action in PC12 cell exocytosis. This was extended to PC12 cell exocytosis triggered by Sr(2+), which was also selectively affected by high-affinity C2-domains of synaptotagmins. Together, our results suggest that Ca(2+) triggering of exocytosis involves tandem Ca(2+) sensors provided by distinct plasma membrane and vesicular synaptotagmins. According to this hypothesis, plasma membrane synaptotagmins represent high-affinity Ca(2+) sensors involved in slow Ca(2+)-dependent exocytosis, whereas vesicular synaptotagmins function as low-affinity Ca(2+) sensors specialized for fast Ca(2+)-dependent exocytosis.  相似文献   

9.
Xu J  Mashimo T  Südhof TC 《Neuron》2007,54(4):567-581
Synaptotagmin-1 and -2 are known Ca(2+) sensors for fast synchronous neurotransmitter release, but the potential Ca(2+)-sensor functions of other synaptotagmins in release remain uncharacterized. We now show that besides synaptotagmin-1 and -2, only synaptotagmin-9 (also called synaptotagmin-5) mediates fast Ca(2+) triggering of release. Release induced by the three different synaptotagmin Ca(2+) sensors exhibits distinct kinetics and apparent Ca(2+) sensitivities, suggesting that the synaptotagmin isoform expressed by a neuron determines the release properties of its synapses. Conditional knockout mice producing GFP-tagged synaptotagmin-9 revealed that synaptotagmin-9 is primarily expressed in the limbic system and striatum. Acute deletion of synaptotagmin-9 in striatal neurons severely impaired fast synchronous release without changing the size of the readily-releasable vesicle pool. These data show that in mammalian brain, only synaptotagmin-1, -2, and -9 function as Ca(2+) sensors for fast release, and that these synaptotagmins are differentially expressed to confer distinct release properties onto synapses formed by defined subsets of neurons.  相似文献   

10.
Pang ZP  Sun J  Rizo J  Maximov A  Südhof TC 《The EMBO journal》2006,25(10):2039-2050
Synaptotagmin 2 resembles synaptotagmin 1, the Ca2+ sensor for fast neurotransmitter release in forebrain synapses, but little is known about synaptotagmin 2 function. Here, we describe a severely ataxic mouse strain that harbors a single, destabilizing amino-acid substitution (I377N) in synaptotagmin 2. In Calyx of Held synapses, this mutation causes a delay and a decrease in Ca2+-induced but not in hypertonic sucrose-induced release, suggesting that synaptotagmin 2 mediates Ca2+ triggering of evoked release in brainstem synapses. Unexpectedly, we additionally observed in synaptotagmin 2 mutant synapses a dramatic increase in spontaneous release. Synaptotagmin 1-deficient excitatory and inhibitory cortical synapses also displayed a large increase in spontaneous release, demonstrating that this effect was shared among synaptotagmins 1 and 2. Our data suggest that synaptotagmin 1 and 2 perform equivalent functions in the Ca2+ triggering of action potential-induced release and in the restriction of spontaneous release, consistent with a general role of synaptotagmins in controlling 'release slots' for synaptic vesicles at the active zone.  相似文献   

11.
Synaptotagmins in membrane traffic: which vesicles do the tagmins tag?   总被引:4,自引:0,他引:4  
Marquèze B  Berton F  Seagar M 《Biochimie》2000,82(5):409-420
The aim of this review is to give a broad picture of what is actually known about the synaptotagmin family. Synaptotagmin I is an abundant synaptic vesicle and secretory granule protein in neurons and endocrine cells which plays a key role in Ca(2+)-induced exocytosis. It belongs to the large family of C2 domain-proteins as it contains two internal repeats that have homology to the C2 domain of protein kinase C. Eleven synaptotagmin genes have been described in rat and mouse. Except for synaptotagmin I, and by analogy synaptotagmin II, the functions of these proteins are unknown. In this review we focus on data obtained on the various isoforms without exhaustively discussing the role of synaptotagmin I in neurotransmission. Numerous in vitro interactions of synaptotagmin I with key components of the exocytosis-endocytosis machinery have been reported. Additional data concerning the other synaptotagmins are now becoming available and are reviewed here. Only interactions which have been described for several synaptotagmins, are mentioned. It is unlikely that a single isoform displays all of these potential interactions in vivo and probably the subcellular distribution of the protein will favor some of them and preclude others. Therefore, to discuss the putative role of the various synaptotagmins we have examined in detail published data concerning their localization.  相似文献   

12.
The synaptotagmin family has been implicated in calcium-dependent neurotransmitter release, although Synaptotagmin 1 is the only isoform demonstrated to control synaptic vesicle fusion. Here, we report the characterization of the six remaining synaptotagmin isoforms encoded in the Drosophila genome, including homologues of mammalian Synaptotagmins 4, 7, 12, and 14. Like Synaptotagmin 1, Synaptotagmin 4 is ubiquitously present at synapses, but localizes to the postsynaptic compartment. The remaining isoforms were not found at synapses (Synaptotagmin 7), expressed at very low levels (Synaptotagmins 12 and 14), or in subsets of putative neurosecretory cells (Synaptotagmins alpha and beta). Consistent with their distinct localizations, overexpression of Synaptotagmin 4 or 7 cannot functionally substitute for the loss of Synaptotagmin 1 in synaptic transmission. Our results indicate that synaptotagmins are differentially distributed to unique subcellular compartments. In addition, the identification of a postsynaptic synaptotagmin suggests calcium-dependent membrane-trafficking functions on both sides of the synapse.  相似文献   

13.
Synaptotagmins are synaptic vesicle proteins containing two calcium-binding C2 domains which are involved in coupling calcium influx through voltage-gated channels to vesicle fusion and exocytosis of neurotransmitters. The interaction of synaptotagmins with native P/Q-type calcium channels was studied in solubilized synaptosomes from rat cerebellum. Antibodies against synaptotagmins I and II, but not IV co-immunoprecipitated [125I]omega-conotoxin MVIIC-labelled calcium channels. Direct interactions were studied between in vitro-translated [35S]synaptotagmin I and fusion proteins containing cytoplasmic loops of the alpha1A subunit (BI isoform). Gel overlay revealed the association of synaptotagmin I with a single region (residues 780-969) located in the intracellular loop connecting homologous domains II and III. Saturable calcium-independent binding occurred with equilibrium dissociation constants of 70 nM and 340 nM at 4 degrees C and pH 7.4, and association was blocked by addition of excess recombinant synaptotagmin I. Direct synaptotagmin binding to the pore-forming subunit of the P/Q-type channel may optimally locate the calcium-binding sites that initiate exocytosis within a zone of voltage-gated calcium entry.  相似文献   

14.
Upon entering a presynaptic terminal, an action potential opens Ca(2+) channels, and transiently increases the local Ca(2+) concentration at the presynaptic active zone. Ca(2+) then triggers neurotransmitter release within a few hundred microseconds by activating synaptotagmins Ca(2+). Synaptotagmins bind Ca(2+) via two C2-domains, and transduce the Ca(2+) signal into a nanomechanical activation of the membrane fusion machinery; this activation is mediated by the Ca(2+)-dependent interaction of the synaptotagmin C2-domains with phospholipids and SNARE proteins. In triggering exocytosis, synaptotagmins do not act alone, but require an obligatory cofactor called complexin, a small protein that binds to SNARE complexes and simultaneously activates and clamps the SNARE complexes, thereby positioning the SNARE complexes for subsequent synaptotagmin action. The conserved function of synaptotagmins and complexins operates generally in most, if not all, Ca(2+)-regulated forms of exocytosis throughout the body in addition to synaptic vesicle exocytosis, including in the degranulation of mast cells, acrosome exocytosis in sperm cells, hormone secretion from endocrine cells, and neuropeptide release.  相似文献   

15.
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis is required for calcium-dependent exocytosis in neurosecretory cells. We developed a PtdIns(4,5)P2 bead pulldown strategy combined with subcellular fractionation to identify endogenous chromaffin granule proteins that interact with PtdIns(4,5)P2. We identified two synaptotagmin isoforms, synaptotagmins 1 and 7; spectrin; alpha-adaptin; and synaptotagmin-like protein 4 (granuphilin) by mass spectrometry and Western blotting. The interaction between synaptotagmin 7 and PtdIns(4,5)P2 and its functional relevance was investigated. The 45-kDa isoform of synaptotagmin 7 was found to be highly expressed in adrenal chromaffin cells compared with PC12 cells and to mainly localize to secretory granules by subcellular fractionation, immunoisolation, and immunocytochemistry. We demonstrated that synaptotagmin 7 binds PtdIns(4,5)P2 via the C2B domain in the absence of calcium and via both the C2A and C2B domains in the presence of calcium. We mutated the polylysine stretch in synaptotagmin 7 C2B and demonstrated that this mutant domain lacks the calcium-independent PtdIns(4,5)P2 binding. Synaptotagmin 7 C2B domain inhibited catecholamine release from digitonin-permeabilized chromaffin cells, and this inhibition was abrogated with the C2B polylysine mutant. These data indicate that synaptotagmin 7 C2B-effector interactions, which occur via the polylysine stretch, including calcium-independent PtdIns(4,5)P2 binding, are important for chromaffin granule exocytosis.  相似文献   

16.
Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca(2+) sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca(2+) sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.  相似文献   

17.
Synaptotagmin regulation of coated pit assembly   总被引:6,自引:0,他引:6  
Synaptotagmins bind clathrin AP-2 with high affinity via their second C(2) domain, which indicates they are involved in coated pit function. We now report that expression of synaptotagmins lacking either the second C(2) domain or the entire cytoplasmic region potently inhibit endocytosis. Inhibition was dependent on two intramembrane cysteine residues that were found to be essential for synaptotagmin oligomerization. Cells expressing the wild-type, but not the mutant, truncated synaptotagmin fragment had a reduced number of clathrin-coated pits. These results suggest that the formation of synaptotagmin multimers is an important step in the regulation of coated pit assembly.  相似文献   

18.
Synaptotagmins constitute a family of membrane proteins that are characterized by one transmembrane region and two C2 domains. Recent genetic and biochemical studies have indicated that oligomerization of synaptotagmin (Syt) I is important for expression of function during exocytosis of synaptic vesicles. However, little is known about hetero-oligomerization in the synaptotagmin family. In this study, we showed that the synaptotagmin family is a type I membrane protein (N(lumen)/C(cytoplasm)) by introducing an artificial N-glycosylation site at the N-terminal domain, and systematically examined all the possible combinations of hetero-oligomerization among synaptotagmin family proteins (Syts I-XI). We classified the synaptotagmin family into four distinct groups based on differences in Ca(2+)-dependent and -independent oligomerization activity. Group A Syts (III, V, VI, and X) form strong homo- and hetero-oligomers by disulfide bonds at an N-terminal cysteine motif irrespective of the presence of Ca(2+) [Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427]. Group B Syts (I, II, VIII, and XI) show moderate homo-oligomerization irrespective of the presence of Ca(2+). Group C synaptotagmins are characterized by weak Ca(2+)-dependent (Syts IX) or no homo-oligomerization activity (Syt IV). Syt VII (Group D) has unique Ca(2+)-dependent homo-oligomerization properties with EC(50) values of about 150 microM Ca(2+) [Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185]. Syts IV, VIII, and XI did not show any apparent hetero-oligomerization activity, but some sets of synaptotagmin isoforms can hetero-oligomerize in a Ca(2+)-dependent and/or -independent manner. Our data suggest that Ca(2+)-dependent and -independent hetero-oligomerization of synaptotagmins may create a variety of Ca(2+)-sensors.  相似文献   

19.
Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction. Inositol hexakisphosphate modulates synaptotagmin coupling to the syntaxin/SNAP-25 dimer, which is mirrored by changes in chromaffin cell exocytosis. Our results shed new light on the functional importance of the conserved polybasic synaptotagmin motif, suggesting that synaptotagmin interacts with the t-SNARE dimer to up-regulate the probability of SNARE-mediated membrane fusion.  相似文献   

20.
Acrosomal exocytosis is a calcium-dependent secretion event causing the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. The synaptotagmins are a family of calcium-binding proteins that participate in the exocytosis of synaptic vesicles. The ubiquitous synaptotagmin VI isoform was found in human sperm cells by Western blot analysis. Immunocytochemistry at the optical and electron microscopy levels localized the protein to the outer acrosomal membrane. Calcium-triggered acrosomal exocytosis in permeabilized sperm cells was abrogated by a specific anti-synaptotagmin VI antibody, indicating that the protein is required for the process. Moreover, a recombinant fusion protein between glutathione S-transferase and the two calcium and phospholipid binding domains of synaptotagmin VI completely inhibited calcium-triggered exocytosis. Interestingly, phorbol ester-dependent in vitro phosphorylation of this recombinant protein abolished its inhibitory effect. We previously showed that, in permeabilized spermatozoa, addition of active Rab3A triggers acrosomal exocytosis at very low calcium concentration. Rab3A-promoted exocytosis was inhibited by the cytosolic domain of synaptotagmin VI and by the anti-synaptotagmin VI antibody, indicating that synaptotagmin is also necessary for Rab-mediated acrosomal content release. In conclusion, the results strongly indicate that synaptotagmin VI is a key component of the secretory machinery involved in acrosomal exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号