首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fucolipid that carried human blood group Lea activity was isolated from human small intestine. It contianed fucose, galactose, N-acetyl glucosamine, glucose, and ceramide in a molar ratio of 1:2:1:1:1. After periodate oxidation only 1 molecule of galactose and the N-acetylglucosamine remained. Permethylation of the lipid gave derivatives of a terminal fucose and galactose residue together with 2,4,6-tri-O-methylgalactose and 2,3,6-tri-O-methylglucose. After removal of fucose the lipid could be converted to a ceramide trihexoside with beta-galactosidase, and this, in turn, to ceramide lactoside by the action of beta-N-acetylhexosaminidase. Both enzymes converted the defucosylated derivative to a ceramide monohexoside. The methylated and the methylated and reduced derivatives of the intact lipid gave ions in mass spectrometry for a terminal hexose and deoxyhexose, a terminal trisaccharide of hexose, deoxyhexose and N-acetylhexosamine, and terminal tetra-and pentasaccharides. Ceramide fragments characteristic of hydroxy fatty acids with 16, 22, 23, and 24 carbons were found together with those of phytospingosine as the major long chain base. On the basis of these results and the immunologic activity of the fucolipid, the following structure is proposed: betaGal (1 leads to 3)betaGlcNAc (1 leads to 3)betaGal (1 leads to 4)Glc-ceramide alphaFuc (1 leads to 4).  相似文献   

2.
1. Neutral glycosphingolipids of hamster fibroblast NIL cells have been characterized as follows: glucosylceramide, lactosylceramide (betaGall yields 4Glc yields Cer), a digalactosylceramide (alphaGall yields 4betaGal yields Cer), a trihexosylceramide (alphaGall yields 4betaGall yields 4Glc yields Cer), two kinds of ceramide tetrasaccharides (A: alphaGa1NAcl yields 3betaGalNAcl yields 3alphaGall yields 4betaGall yields 1Cer, a new type of Forssman active glycolipid; B: globoside, betaGalNAcl yields 3alphaGall yields 4betaGall yields 4betaGlc yields Cer), and a ceramide pentasaccharide having a classical structure for Forssman antigen (alphaGalNAcl yields 3betaGalNAcl yields 3alphaGall yields 4betaGall yields 4Glc yields Cer). 2. Neutral glycosphingolipids of polyoma virus-transformed NIL cells (NILpy) have been characterized as having an additional ceramide tetrasaccharide which was absent in normal NIL cells. The structure of this specific glycolipid was identified as lacto-N-neotetraosylceramide (betaGall yields 4betaGlc-NAcl yields 3betaGall yields 4Glc yields Cer). Chemical quantities of ceramide tetra- and pentasaccharides in NILpy cells were much lower than in NIL cells. 3. All of these glycolipids, except glucosylceramide and lactosylceramide, were labeled externally by galactose oxidase and tritiated borohydride according to the method previously described (GAHMBERG, C. G, and HAKOMORI, S. (1973) J. Biol. Chem. 248, 4311-4317). The specific activities of the label in glycolipid of NIHpy cells were much greater than that in NIL cells, i.e. reactivity of glycolipids with galactose oxidase in NIHpy cells was much higher than for NIL cells. The surface label in glycolipids was cell cycle-dependent in NIL cells, and a remarkable exposure of a galactosyl residue of a ceramide tetrasaccharide was demonstrated only on the surface of NILpy cells, due to the presence of lacto-N-neotetraosylceramide.  相似文献   

3.
Cytolipin R, a ceramide tetrahexoside isolated from rat lymphosarcoma, was studied by sequential hydrolysis with specific glycosidases which revealed the anomeric configurations of the glycosidic bonds. Sugar linkages were established by combined gas-liquid chromatography and mass spectrometry of the partially methylated alditol acetates prepared after permethylation and hydrolysis of the intact lipid. Results indicated the structure of cytolipin R to be N-acetylgalactosaminyl(beta1-->3)galactosyl(alpha1-->3) galactosyl(beta1-->4)glucosyl ceramide. Cytolipin K (globoside I) differs in having a -galactosyl(alpha1-->4)galactosyl- internal linkage, and this difference must account for the immunological differences between cytolipin K and cytolipin R.  相似文献   

4.
We have reported the existence of a triphosphonoglycosphingolipid, EGL-I, in the eggs of a sea gastropod, Aplysia kurodai [Yamada, S., Araki, S., Abe, S., Kon, K., Ando, S., and Satake, M. (1995) J. Biochem. 117, 794-799]. We have now isolated a novel glycosphingolipid, named EGL-II, from the eggs of Aplysia. By component analysis, sugar analysis, permethylation studies, fast atom bombardment-mass spectrometry, secondary ion mass spectrometry, and proton magnetic resonance spectrometry, its structure was revealed to be as follows: Galalpha1-->3(GlcNAcalpha1-->2)Galalpha1-->3(3-O-MeGalalpha1-->2)Galalpha1-->3[6'-O-(2-aminoethylphosphonyl)Galalpha1-->2](2-aminoethylphosphonyl-->6)Galbeta1-->4(2-aminoethylphosphonyl-->6)Glcbeta1-->1ceramide. The major aliphatic components of the ceramide are palmitic acid, stearic acid, and anteisononadeca-4-sphingenine.  相似文献   

5.
The O-specific polysaccharide of Shigella dysenteriae type 1, which has the repeating tetrasaccharide unit -->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->3)-alpha-D-GlcNAcp-(1--> (A-B-C-D), is a major virulence factor, and it is believed that antibodies against this polysaccharide confer protection to the host. The conformational properties of fragments of this O-antigen were explored using systematic search with a modified HSEA method (GLYCAN) and with molecular mechanics MM3(96). The results show that the alpha-D-Gal-(1-->3)-alpha-D-GlcNAc linkage adopts two favored conformations, phi/psi approximately equal to -40 degrees /-30 degrees (I) and approximately 15 degrees /30 degrees (II), whereas the other glycosidic linkages only have a single favored phi/psi conformational range. MM3 indicates that the trisaccharide B-C-D and tetrasaccharides containing the B-C-D moiety exist as two different conformers, distinguished by the conformations I and II of the C-D linkage. For the pentasaccharide A-B-C-D-A' and longer fragments, the calculations show preference for the C-D conformation II. These results can explain previously reported nuclear magnetic resonance data. The pentasaccharide in its favored conformation II is sharply bent, with the galactose residue exposed at the vertex. This hairpin conformation of the pentasaccharide was successfully docked with the binding site of a monoclonal IgM antibody (E3707 E9) that had been homology modeled from known crystal structures. For fragments made of repetitive tetrasaccharide units, the hairpin conformation leads to a left-handed helical structure with the galactose residues protruding radially at the helix surface. This arrangement results in a pronounced exposure of the galactose and also the adjacent rhamnose in each repeating unit, which is consistent with the known role of the as alpha-L-Rhap-(1-->2)-alpha-D-Galp moiety as a major antigenic epitope of this O-specific polysaccharide.  相似文献   

6.
Chen L  Zhu Y  Kong F 《Carbohydrate research》2002,337(5):383-390
The tetrasaccharide repeating unit of Escherichia coli O9a, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, and the pentasaccharide repeating unit of E. coli O9 and Klebsiella O3, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, were synthesized as their methyl glycosides. Thus, selective 3-O-allylation of p-methoxyphenyl alpha-D-mannopyranoside via a dibutyltin intermediate gave p-methoxyphenyl 3-O-allyl-alpha-D-mannopyranoside (2) in good yield. Benzoylation (-->3), then removal of 1-O-methoxyphenyl (right arrow4), and subsequent trichloroacetimidation afforded the 3-O-allyl-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (5). Condensation of 5 with methyl 4,6-O-benzylidene-alpha-D-mannopyranoside (6) selectively afforded the (1-->3)-linked disaccharide 7. Benzoylation of 7, debenzylidenation, benzoylation, and deallylation gave methyl 2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (11) as the disaccharide acceptor. Coupling of 11 with (1-->2)-linked mannose disaccharide donor 17 or trisaccharide donor 21, followed by deacylation, furnished the target tetrasaccharide and pentasaccharide, respectively.  相似文献   

7.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

8.
The neutral glycosphingolipids of ova of the fresh-water bivalve, Hyriopsis schlegelii were characterized. The most abundant glycolipid was ceramide monosaccharide, followed by ceramide trisaccharide, ceramide tetrasaccharide, and ceramide disaccharide. More complex neutral glycolipids accounted for almost one-third of the total. The total amount of these glycolipids was 0.59 mg/g of dry weight of the ova preparation, a yield which was one-seventh of that of spermatozoa neutral glycolipids. Structural analyses were performed by enzymatic hydrolysis of the glycolipids with exoglycosidases, permethylation experiments, and also immuno-chemical assays. The proposed structures are as follows: ceramide monosaccharides, Gal-Cer and Glc-Cer; ceramide disacharides, Gal(beta 1-4)Gal-Cer, Gal(beta 1-4)Glc-Cer, and Man(beta 1-4)Glc-Cer; ceramide trisaccharide, Man(alpha 1-3)Man(beta 1-4)Glc-Cer; ceramide tetrasaccharides, Man(alpha 1-3)[Xyl(beta 1-2)]Man(beta 1-4)Glc-Cer, GlcNAc(beta 1-2)Man(alpha 1-3)Man(beta 1-4)Glc-Cer, Man(alpha 1-3)[Gal(beta 1-2)]Man(beta 1-4)Glc-Cer, and Man(alpha 1-2?)Man(alpha 1-3)Man(beta 1-4)Glc-Cer. The latter two ceramide tetrasaccharides were new types of glycosphingolipids. The spectrum of ova glycolipids appeared to be more complicated than that of the spermatozoa glycolipids. The ova glycolipids characterized here, with the exception of ceramide tetrasaccharides, contained considerable amounts of 2-hydroxy fatty acids, which were not observed in the spermatozoa glycolipids. The major sphingosine base was C18-sphingenine in all the ova glycolipids as well as in the spermatozoa glycolipids. However, the content of anteiso type of sphingosine base was 2- to 3-fold higher in the ova than in the spermatozoa.  相似文献   

9.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

10.
The carbohydrate moiety of sphingoglycolipid, after preliminary acetylation, can be released by periodate oxidation catalyzed by a trace amount of osmium tetroxide, followed by alkaline treatment. Cerebroside, lactosyl ceramide, hematoside, globoside, and gangliosides were degraded to yield, respectively, galactose, lactose, sialyl lactose, a tetrasaccharide, and various oligosaccharides containing sialic acid. Oligosaccharides were separated by paper chromatography and paper electrophoresis. The procedure is useful for characterizing micromolar amounts of sphingoglycolipids.  相似文献   

11.
The cyclic tetrasaccharide, cyclo-(-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was oxidized in high yield to a dicarboxylic acid, cyclo-(-->6)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA-(1-->). The parent and oxidized compound were then screened for the ability to form stable complexes with 20 metal cations. Ion-exchange thin-layer chromatography was utilized to survey binding in aqueous and 50% methanolic solutions. The screening identified Pb2+, Fe2+ and Fe3+ as forming strong metal chelates with the oxidized cyclic tetrasaccharide. The stoichiometry of the oxidized cyclic tetrasaccharide and Pb2+ complex was determined to be 1:1 using aqueous gel-permeation chromatography. Perturbations between the free and complexed structure were examined using NMR spectroscopy. Molecular simulations were used to identify a probable structure of oxidized cyclic tetrasaccharide complexed with Pb2+.  相似文献   

12.
A new method to cleave the double bond of sphingolipids has been developed. Using limited concentrations of KMnO4 and an excess of NaIO4, in a neutral aqueous tert-butanol solvent system gave nearly quantitative yields of the oxidized product. A variety of natural glycosphingolipids (GSLs): GlcC, GalC, SGC, LC, Gb3C, Gb4C, Gg4C, Gb5C, and GM1C, gave the corresponding acids: 2-hydroxy-3-(N-acyl)-4-(O-glycosyl)-oxybutyric acids, i.e. "glycosyl ceramide acids" (GSL.CCOOH) in excellent yields (80-90%). Deacyl GSLs (dGSLs) were oxidized to acids containing the oligosaccharides devoid of hydrocarbon chains, i.e. "ceramide oligosaccharides" (dGSL. NRR1CCOOH, where R = R1 = H; R = H, R1 = CH3CO; or R = R1 = Me). The efficacy of this method was demonstrated by transforming natural GSLs: GlcC, GalC, GalS, SGC, LC, Gb3C, and Gb4C into neoglycoproteins via coupling glycosyl ceramide acids (except GalS, which was coupled directly) to bovine serum albumin (BSA). Mass spectroscopic analysis of GalC-BSA conjugates, (GalC.CONH)nBSA and (GalS.NHCO)nBSA gave a value of 9 +/- 1 and 16 +/- 2 for n. Neoglycoconjugates derived from GlcC, GalC (type I and II and the behenic analog), SGC, LC, and Gb3C were recognized by the recombinant human immunodeficiency virus coat protein gp120 (rgp120). The GalS conjugate showed significantly reduced binding, and the Gb4C conjugate showed no binding. Thus, rgp120/GSL-BSA interaction requires a terminal galactose and/or glucose residue. Terminal N-acetylgalactosamine containing GSLs are not bound. The ceramide acid conjugates provide a more effective scaffold for presentation of glycone for rgp120 binding than those derived from dGSLs. The retention of receptor specificity of the glycoconjugates was validated by retention of the expected binding specificity of VT1 and VT2e for Gb3C and Gb4C conjugates, respectively. These studies open a new vista in the generation of glycoconjugates from GSLs and further emphasize the role of aglycone in glycolipid recognition.  相似文献   

13.
Li A  Kong F 《Carbohydrate research》2005,340(12):1949-1962
Effective syntheses of galactose hepta-, octa-, nona-, and decasaccharides that exist in the rhizomes of Atractylodes lancea DC were achieved with 2,3,4,6-tetra-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (1), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-d-galactopyranoside (2), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (5), 4-methoxyphenyl 6-O-acetyl-2,4-di-O-benzoyl-beta-d-galactopyranoside (22), and 4-methoxyphenyl 2,4,6-tri-O-benzoyl-beta-d-galactopyranoside (26) as the key synthons. Coupling of 2 with 1, followed by oxidative cleavage of 1-OMP and subsequent trichloroacetimidate formation gave the beta-(1-->6)-linked disaccharide donor 4. Condensation of 2 with 5 and subsequent selective deacetylation by methanolysis produced the beta-(1-->6)-linked disaccharide acceptor 7. Reaction of 7 with 4, oxidative cleavage of 1-OMP, and trichloroacetimidate formation produced the tetrasaccharide donor 9. The penta- (15), the hexa- (17), and the heptasaccharide donor 19 were synthesized similarly. Meanwhile, treatment of 1 with 22 yielded beta-(1-->3)-linked disaccharide 23 and alpha-(1-->3)-linked disaccharide 25. Oxidative cleavage of 1-OMp of 23 followed by trichloroacetimidate formation produced the disaccharide donor 24. Coupling of 26 with 24, again, gave beta-linked 27 and alpha-linked 29. Selective 6-O-deacetylation of 27 afforded the trisaccharide acceptor 28. TMSOTf-promoted condensation 28 of with the tetra- (9), penta- (15), hexa-(17), and heptasaccharide donor 19, followed by deprotection, gave the target compounds.  相似文献   

14.
Saponification of cerebroside sulfate (sulfatide) by refluxing with 1 N KOH in 90% n-butanol for 1 h yielded ceramide, sphingosine, lysosulfatide (psychosine-3'-sulfate ester) and a hitherto unknown compound. The latter compound was identified as 3,6-anhydrogalactosyl sphingosine (3',6'-anhydropsychosine) from its mass spectrum. The structure of lysosulfatide was confirmed by reacylating it to sulfatide by condensing it with lignoceroyl chloride. The resulting sulfatide, which was chromatographically identical to control sulfatides, was not oxidized by periodate. The sulfatide was also permethylated and methanolyzed. The sugar moiety obtained was identified as methyl 2,4,6-tri-O-methylgalactoside by gas-liquid chromatography and thin-layer chromatography. The presence of the sulfate group in lysosulfatide was further confirmed by IR spectroscopy and the presence of radioactivity when it was prepared from [35S]sulfatide. The effect of the sulfate group on cleavage of the galactoside linkage and on the formation of the 3,6-anhydro derivative is discussed.  相似文献   

15.
Free ceramide, glucosylceramide, and sphingomyelin were isolated from mature cells of adult rat small intestine. Free ceramide and ceramide cleaved from sphingomyelin by enzymatic hydrolysis were fractionated by thin-layer chromatography on borate-impregnated silica gel plates. Sphingoid bases were characterized by gas-liquid chromatography of aldehydes formed upon periodate oxidation. Fatty acids were quantified as methyl esters. Ceramide structures were confirmed by direct-inlet mass spectrometry. Free ceramide was found to contain two major long-chain bases in nearly equal quantity: sphingosine, mainly linked to palmitic acid, and 4D-hydroxysphinganine associated with C20 to C24 fatty acids, 22% being hydroxylated. Sphinganine occurred as a minor component linked to nonhydroxy fatty acids. Sphingomyelin contained the three long-chain bases and 63% of its ceramide was N-palmitoyl-sphingosine. Mass spectrometry of glucosylceramide confirmed 4D-hydroxyshingamine as the major sphingoid base associated preferentially with longer chain hydroxy fatty acids.  相似文献   

16.
Five kinds of sphingoglycolipids were isolated from Turbo cornutus. Four of them were a series of novel glycolipids consisting only of galactose. The structures of these glycolipids were studied by methylation analysis, periodate oxidation, enzymatic degradation, and proton magnetic resonance spectroscopy. Three glycolipids were characterized as galactosyl(beta 1 leads to 1)ceramide, galactosyl(beta 1 leads to 6)galactosyl(beta 1 leads to 1)ceramide, and galactosyl(beta 1 leads to 6)galactosyl(beta 1 leads to 6)galactosyl(beta 1 leads to 1)ceramide. Data indicating that the 4th glycolipid might be the tetragalactosyl derivative of this series were obtained. The carbohydrate moiety of the 5th glycolipid, in contrast, was composed of fucose, galactose, glucose and N-acetylglycosamine in a molar ratio of 1 : 2 : 1 : 1.  相似文献   

17.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

18.
Ceramide lactoside [1-O-(galactosido-4-β-glucosido)-2-N-acyl-sphingosine] was hydrolysed to ceramide glucoside and galactose by β-galactosidase of rat brain. The reaction was not reversible, required cholate or taurocholate, had optimum pH5·0 and Km 2·2×10−5m. It was inhibited by γ-galactonolactone and galactose as well as by ceramide, sphingosine and fatty acid. Ceramide lactoside could be degraded to ceramide, galactose and glucose by mixtures of rat-brain β-galactosidase and ox-brain β-glucosidase.  相似文献   

19.
The carbohydrate composition was determined for ceramide hexosides isolated from brains of patients with Tay-Sachs disease and generalized gangliosidosis (hereby named GM1-gangliosidosis). Gray matter of patients with each disease showed a characteristic abnormal ceramide hexoside pattern. In Tay-Sachs gray matter, ceramide trihexoside is the major component, whereas ceramide tetrahexoside is barely detectable. In GM1-gangliosidosis, ceramide tetrahexoside is the major ceramide hexoside, while ceramide trihexoside is present only in small amount. These two major components have been characterized as the asialo derivatives of, respectively, the "Tay-Sachs ganglioside" (GM2-ganglioside) and the normal major monosialoganglioside (GM1-ganglioside). In both diseases, more than half the ceramide monohexoside of gray matter was glucocerebroside. Gray matter ceramide dihexoside, present in both diseases at higher than normal levels, was mostly ceramide lactoside, with possibly a small amount of ceramide digalactoside. Sulfatide contained only galactose. The abnormal ceramide hexoside pattern is limited to gray matter: white matter showed normal ceramide hexosides, i.e. a preponderance of monohexosides and sulfatide, with no detectable glucocerebroside.  相似文献   

20.
《FEBS letters》1997,405(1):55-59
Exposure of human blood monocytes derived macrophages to modified (oxidized or acetylated) LDL induced a ∼40% elevation (60 pmol/106 cells) of the endogenous level of the sphingolipid ceramide. A rise of both neutral and acidic SMase activity was found after treatment with oxidized LDL (250 and 80%), while addition of acLDL stimulated only the neutral enzyme (280%). Sphingo(phospho)lipids from LDL were transferred to the cell membrane and distributed into intracellular compartments as observed with acLDL containing BODIPY-FL-C5-SM. Quantitation of ceramide after the addition of [3H-N-acetyl]- or BODIPY-FL-C5-SM-labeled modified LDL (27 μg/ml) to the cell culture medium indicated that approximately 210 pmol CA/106 cells was generated from exogenous (ox/acLDL) SM. These results demonstrate a stimulation of the sphingomyelin-ceramide pathway by modified LDL utilizing primarily exogenous (LDL-derived) substrate and suggest that the effects of modified LDL are at least partially due to an increased level of the messenger ceramide.© 1997 Federation of European Biochemical Societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号