共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sac1p mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation 总被引:6,自引:1,他引:6 下载免费PDF全文
《The Journal of cell biology》1995,131(6):1377-1386
Protein translocation into the yeast endoplasmic reticulum requires the transport of ATP into the lumen of this organelle. Microsomal ATP transport activity was reconstituted into proteoliposomes to characterize and identify the transporter protein. A polypeptide was purified whose partial amino acid sequence demonstrated its identity to the product of the SAC1 gene. Accordingly, microsomal membranes isolated from strains harboring a deletion in the SAC1 gene (sac1 delta) were found to be deficient in ATP-transporting activity as well as severely compromised in their ability to translocate nascent prepro- alpha-factor and preprocarboxypeptidase Y. Proteins isolated from the microsomal membranes of a sac1 delta strain were incapable of stimulating ATP transport when reconstituted into the in vitro assay system. When immunopurified to homogeneity and incorporated into artificial lipid vesicles, Sac1p was shown to reconstitute ATP transport activity. Consistent with the requirement for ATP in the lumen of the ER to achieve the correct folding of secretory proteins, the sac1 delta strain was shown to have a severe defect in transport of procarboxypeptidase Y out of the ER and into the Golgi complex in vivo. The collective data indicate an intimate role for Sac1p in the transport of ATP into the ER lumen. 相似文献
3.
Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro 总被引:21,自引:11,他引:10 下载免费PDF全文
《The Journal of cell biology》1993,120(4):865-875
The SEC13 gene of Saccharomyces cerevisiae is required in vesicle biogenesis at a step before or concurrent with the release of transport vesicles from the ER membrane. SEC13 encodes a 33-kD protein with sequence homology to a series of conserved internal repeat motifs found in beta subunits of heterotrimeric G proteins. The product of this gene, Sec13p, is a cytosolic protein peripherally associated with membranes. We developed a cell-free Sec13p-dependent vesicle formation reaction. Sec13p-depleted membranes and cytosol fractions were generated by urea treatment of membranes and affinity depletion of a Sec13p-dihydrofolate reductase fusion protein, respectively. These fractions were unable to support vesicle formation from the ER unless cytosol containing Sec13p was added. Cytosolic Sec13p fractionated by gel filtration as a large complex of about 700 kD. Fractions containing the Sec13p complex restored activity to the Sec13p- dependent vesicle formation reaction. Expression of SEC13 on a multicopy plasmid resulted in overproduction of a monomeric form of Sec13p, suggesting that another member of the complex becomes limiting when Sec13p is overproduced. Overproduced, monomeric Sec13p was inactive in the Sec13p- dependent vesicle formation assay. 相似文献
4.
Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex. 总被引:5,自引:6,他引:5 下载免费PDF全文
The yeast vacuolar proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral membrane subunits involved in ATP hydrolysis and integral membrane subunits involved in proton pumping. The yeast vma21 mutant was isolated from a screen to identify mutants defective in V-ATPase function. vma21 mutants fail to assemble the V-ATPase complex onto the vacuolar membrane: peripheral subunits accumulate in the cytosol and the 100-kDa integral membrane subunit is rapidly degraded. The product of the VMA21 gene (Vma21p) is an 8.5-kDa integral membrane protein that is not a subunit of the purified V-ATPase complex but instead resides in the endoplasmic reticulum. Vma21p contains a dilysine motif at the carboxy terminus, and mutation of these lysine residues abolishes retention in the endoplasmic reticulum and results in delivery of Vma21p to the vacuole, the default compartment for yeast membrane proteins. Our findings suggest that Vma21p is required for assembly of the integral membrane sector of the V-ATPase in the endoplasmic reticulum and that the unassembled 100-kDa integral membrane subunit present in delta vma21 cells is rapidly degraded by nonvacuolar proteases. 相似文献
5.
We have analyzed the ability of A165V, V169I/D170N, and P536L mutations to suppress pma1 dominant lethal alleles and found that the P536L mutation is able to suppress the dominant lethality of the pma1-R271T, -D378N, -D378E, and -K474R mutant alleles. Genetic and biochemical analyses of site-directed mutants at Pro-536 suggest that this amino acid may not be essential for function but is important for biogenesis of the ATPase. Proteins encoded by dominant lethal pma1 alleles are retained in the endoplasmic reticulum, thus interfering with transport of wild-type Pma1. Immunofluorescence studies of yeast conditionally expressing revertant alleles show that the mutant enzymes are correctly located at the plasma membrane and do not disturb targeting of the wild-type enzyme. We propose that changes in Pro-536 may influence the folding of the protein encoded by a dominant negative allele so that it is no longer recognized and retained as a misfolded protein by the endoplasmic reticulum. 相似文献
6.
Aux1p/Swa2p is required for cortical endoplasmic reticulum inheritance in Saccharomyces cerevisiae 下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum (ER) is found at the periphery of the cell and around the nucleus. The segregation of ER through the mother-bud neck may occur by more than one mechanism because perinuclear, but not peripheral ER, requires microtubules for this event. To identify genes whose products are required for cortical ER inheritance, we have used a Tn3-based transposon library to mutagenize cells expressing a green fluorescent protein-tagged ER marker protein (Hmg1p). This approach has revealed that AUX1/SWA2 plays a role in ER inheritance. The COOH terminus of Aux1p/Swa2p contains a J-domain that is highly related to the J-domain of auxilin, which stimulates the uncoating of clathrin-coated vesicles. Deletion of the J-domain of Aux1p/Swa2p leads to vacuole fragmentation and membrane accumulation but does not affect the migration of peripheral ER into daughter cells. These findings suggest that Aux1p/Swa2p may be a bifunctional protein with roles in membrane traffic and cortical ER inheritance. In support of this hypothesis, we find that Aux1p/Swa2p localizes to ER membranes. 相似文献
7.
Rot1 is an essential yeast protein originally shown to be implicated in such diverse processes such as β-1,6-glucan synthesis, actin cytoskeleton dynamics or lysis of autophagic bodies. More recently also a role as a molecular chaperone has been discovered. Here, we report that Rot1 interacts in a synthetic manner with Ost3, one of the nine subunits of the oligosaccharyltransferase (OST) complex, the key enzyme of N-glycosylation. The deletion of OST3 in the rot1-1 mutant causes a temperature sensitive phenotype as well as sensitivity toward compounds interfering with cell wall biogenesis such as Calcofluor White, caffeine, Congo Red and hygromycin B, whereas the deletion of OST6, a functional homolog of OST3, has no effect. OST activity in vitro determined in membranes from rot1-1ost3Δ cells was found to be decreased to 45% compared with wild-type membranes, and model glycoproteins of N-glycosylation, like carboxypeptidase Y, Gas1 or dipeptidyl aminopeptidase B, displayed an underglycosylation pattern. By affinity chromatography, a physical interaction between Rot1 and Ost3 was demonstrated. Moreover, Rot1 was found to be involved also in the O-mannosylation process, as the glycosylation of distinct glycoproteins of this type were affected as well. Altogether, the data extend the role of Rot1 as a chaperone required to ensure proper glycosylation. 相似文献
8.
Sec22p is an endoplasmic reticulum (ER)-Golgi v-SNARE protein whose retrieval from the Golgi compartment to the endoplasmic reticulum (ER) is mediated by COPI vesicles. Whether Sec22p exhibits its primary role at the ER or the Golgi apparatus is still a matter of debate. To determine the role of Sec22p in intracellular transport more precisely, we performed a synthetic lethality screen. We isolated mutant yeast strains in which SEC22 gene function, which in a wild type strain background is non-essential for cell viability, has become essential. In this way a novel temperature-sensitive mutant allele, dsl1-22, of the essential gene DSL1 was obtained. The dsl1-22 mutation causes severe defects in Golgi-to-ER retrieval of ER-resident SNARE proteins and integral membrane proteins harboring a C-terminal KKXX retrieval motif, as well as of the soluble ER protein BiP/Kar2p, which utilizes the HDEL receptor, Erd2p, for its recycling to the ER. DSL1 interacts genetically with mutations that affect components of the Golgi-to-ER recycling machinery, namely sec20-1, tip20-5, and COPI-encoding genes. Furthermore, we demonstrate that Dsl1p is a peripheral membrane protein, which in vitro specifically binds to coatomer, the major component of the protein coat of COPI vesicles. 相似文献
9.
An ATP transporter is required for protein translocation into the yeast endoplasmic reticulum. 总被引:6,自引:2,他引:6 下载免费PDF全文
The transfer of precursor proteins through the membrane of the rough endoplasmic reticulum (ER) in yeast is strictly dependent on the presence of ATP. Since Kar2p (the yeast homologue of mammalian BiP) is required for translocation, and is an ATP binding protein, an ATP transport system must be coupled to the translocation machinery of the ER. We report here the characterization of a transport system for ATP in vesicles derived from yeast ER. ATP uptake into vesicles was found to be saturable in the micromolar range with a Km of 1 x 10(-5) M. ATP transport into ER vesicles was specifically inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a stilbene derivative known to inhibit a number of other anion transporters, and by 3'-O-(4-benzoyl)benzoyl-ATP (Bz2-ATP). Inhibition of ATP uptake into yeast microsomes by DIDS and Bz2-ATP blocked protein translocation in vitro measured co- as well as post-translationally. The inhibitory effect of DIDS on translocation was prevented by coincubation with ATP. Moreover, selective membrane permeabilization, allowing ATP access to the lumen, restored translocation activity to DIDS-treated membranes. These results demonstrate that translocation requires a DIDS and Bz2-ATP-sensitive component whose function is to transport ATP to the lumen of the ER. These findings are consistent with current models of protein translocation in yeast which stipulate the participation of Kar2p in the translocation process. 相似文献
10.
J M Villalba M G Palmgren G E Berberián C Ferguson R Serrano 《The Journal of biological chemistry》1992,267(17):12341-12349
Recombinant plant plasma membrane H(+)-ATPase has been produced in a yeast expression system comprising a multicopy plasmid and the strong promoter of the yeast PMA1 gene. Western blotting with a specific monoclonal antibody showed that the plant ATPase is one of the major membrane proteins made by the transformed cells, accounting for about 1% of total yeast protein. The plant ATPase synthesized in yeast is fully active. It hydrolyzes ATP, pumps protons, and the reaction cycle involves a phosphorylated intermediate. Phosphorylation is possible from both ATP and Pi. Unlike the situation in plants, however, most of the plant ATPase is not expressed in the yeast plasma membrane. Rather, the enzyme appears to remain trapped at a very early stage of secretory pathway: insertion into the endoplasmic reticulum. This organelle was observed to proliferate in the form of stacked membranes surrounding the yeast nucleus in order to accommodate the large amount of plant ATPase produced. In this location, the plant ATPase can be purified with high yield (70 mg from 1 kg of yeast) from membranes devoid of endogenous yeast plasma membrane H(+)-ATPase. This convenient expression system could be useful for other eukaryotic membrane proteins and ATPases. 相似文献
11.
Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H(+)-ATPase
The crystal structures of the Ca(2+)- and H(+)-ATPases shed light into the membrane embedded domains involved in binding and ion translocation. Consistent with site-directed mutagenesis, these structures provided additional evidence that membrane-spanning segments M4, M5, M6 and M8 are the core through which cations are pumped. In the present study, we have used alanine/serine scanning mutagenesis to study the structure-function relationships within M6 (Leu-721-Pro-742) of the yeast plasma membrane ATPase. Of the 22 mutants expressed and analyzed in secretory vesicles, alanine substitutions at two well conserved residues (Asp-730 and Asp-739) led to a complete block in biogenesis; in the mammalian P-ATPases, residues corresponding to Asp-730 are part of the cation-binding domain. Two other mutants (V723A and I736A) displayed a dramatic 20-fold increase in the IC(50) for inorganic orthovanadate compared to the wild-type control, accompanied by a significant reduction in the K(m) for Mg-ATP, and an alkaline shift in the pH optimum for ATP hydrolysis. This behavior is apparently due to a shift in equilibrium from the E(2) conformation of the ATPase towards the E(1) conformation. By contrast, the most striking mutants lying toward the extracellular side in a helical structure (L721A, I722A, F724A, I725A, I727A and F728A) were expressed in secretory vesicles but had a severe reduction of ATPase activity. Moreover, all of these mutants but one (F728A) were unable to support yeast growth when the wild-type chromosomal PMA1 gene was replaced by the mutant allele. Surprisingly, in contrast to M8 where mutations S800A and E803Q (Guerra et al., Biochim. Biophys. Acta 1768: 2383-2392, 2007) led to a dramatic increase in the apparent stoichiometry of H(+) transport, three substitutions (A726S, A732S and T733A) in M6 showed a reduction in the apparent coupling ratio. Taken together, these results suggest that M6 residues play an important role in protein stability and function, and probably are responsible for cation binding and stoichiometry of ion transport as suggested by homology modeling. 相似文献
12.
The yeast Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is a multisubunit complex divided into two sectors: the V1 sector catalyzes ATP hydrolysis and the V0 sector translocates protons, resulting in acidification of its resident organelle. Four protein factors participate in V0 assembly. We have discovered a fifth V0 assembly factor, Voa1p (YGR106C); an endoplasmic reticulum (ER)-localized integral membrane glycoprotein. The role of Voa1p in V0 assembly was revealed in cells expressing an ER retrieval-deficient form of the V-ATPase assembly factor Vma21p (Vma21pQQ). Loss of Voa1p in vma21QQ yeast cells resulted in loss of V-ATPase function; cells were unable to acidify their vacuoles and exhibited growth defects typical of cells lacking V-ATPase. V0 assembly was severely compromised in voa1 vma21QQ double mutants. Isolation of V0–Vma21p complexes indicated that Voa1p associates most strongly with Vma21p and the core proteolipid ring of V0 subunits c, c′, and c″. On assembly of the remaining three V0 subunits (a, d, and e) into the V0 complex, Voa1p dissociates from the now fully assembled V0–Vma21p complex. Our results suggest Voa1p functions with Vma21p early in V0 assembly in the ER, but then it dissociates before exit of the V0–Vma21p complex from the ER for transport to the Golgi compartment. 相似文献
13.
Jeong Su Park Sue Young Oh Da Hyun Lee Yu Seol Lee Su Haeng Sung Hye Won Ji 《Free radical research》2016,50(12):1408-1421
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation. 相似文献
14.
Dsl1p, an essential protein required for membrane traffic at the endoplasmic reticulum/Golgi interface in yeast 总被引:3,自引:0,他引:3
To identify novel factors required for ER to Golgi transport in yeast we performed a screen for genes that, when mutated, confer a dependence on a dominant mutant form of the ER to Golgi vesicle docking factor Sly1p, termed Sly1-20p. DSL1 , a novel gene isolated in the screen, encodes an essential protein with a predicted molecular mass of 88 kDa. DSL1 is required for transport between the ER and the Golgi because strains bearing mutant alleles of this gene accumulate the pre-Golgi form of transported proteins at the restrictive temperature. Two strains bearing temperature-sensitive alleles of DSL1 display distinct phenotypes as observed by electron microscopy at the restrictive temperature; although both strains accumulate ER membrane, one also accumulates vesicles. Interestingly, the inviability of strains bearing several mutant alleles of DSL1 can be suppressed by expression of either Erv14p (a protein required for the movement of a specific protein from the ER to the Golgi), Sec21p (the γ-subunit of the COPI coat protein complex coatomer), or Sly1-20p. Because the strongest suppressor is SEC21 , we proposed that Dsl1p functions primarily in retrograde Golgi to ER traffic, although it is possible that Dsl1p functions in anterograde traffic as well, perhaps at the docking stage, as suggested by the suppression by SLY1-20 . 相似文献
15.
The endoplasmic reticulum (ER) is a major site of protein synthesis in eukaryotes. Newly synthesized proteins are monitored by a process of quality control, which removes misfolded or unassembled polypeptides from the ER for degradation by the proteasome. This requires the retrotranslocation of the misfolded proteins from the ER lumen into the cytosol via a pathway that, for some substrates, involves members of the recently discovered Derlin family. The Derlin-1 isoform is present as a dimer in the ER, and we now show that its dimerization is modulated by ER stress. Three distinct types of chemically-induced ER stress substantially reduce the levels of Derlin-1 dimer as assayed by both cross-linking and co-immunoprecipitation. The potential function of the different Derlin-1 populations with respect to ER quality control is investigated by analysing their capacity to associate with a misfolded membrane protein fragment. We show for the first time that Derlin-1 can associate with an aberrant membrane protein fragment in the absence of the viral component US11, and conclude that it is the monomeric form of Derlin-1 that interacts with this potential ER-associated degradation substrate. On the basis of these data we propose a model where the pool of active Derlin-1 in the ER membrane can be modulated in response to ER stress. 相似文献
16.
GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. 总被引:13,自引:2,他引:13
Inositol starvation of auxotrophic yeast interrupts glycolipid biosynthesis and prevents lipid modification of a normally glycosyl phosphatidylinositol (GPI)-linked protein, Gas1p. The unanchored Gas1p precursor undergoes progressive modification in the endoplasmic reticulum (ER), but is not modified by Golgi-specific glycosylation. Starvation-induced defects in anchor assembly and protein processing are rapid, and occur without altered maturation of other proteins. Cells remain competent to manufacture anchor components and to process Gas1p efficiently once inositol is restored. Newly synthesized Gas1p is packaged into vesicles formed in vitro from perforated yeast spheroplasts incubated with either yeast cytosol or the purified Sec proteins (COP II) required for vesicle budding from the ER. In vitro synthesized vesicles produced by inositol-starved membranes do not contain detectable Gas1p. These studies demonstrate that COP II components fulfill the soluble protein requirements for packaging a GPI-anchored protein into ER-derived transport vesicles. However, GPI anchor attachment is required for this packaging to occur. 相似文献
17.
De Craene JO Coleman J Estrada de Martin P Pypaert M Anderson S Yates JR Ferro-Novick S Novick P 《Molecular biology of the cell》2006,17(7):3009-3020
The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Delta in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Delta cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds. 相似文献
18.
The translocation of proteins across the yeast ER membrane requires ATP hydrolysis and the action of DnaK (hsp70) and DnaJ homologues. In Saccharomyces cerevisiae the cytosolic hsp70s that promote post-translational translocation are the products of the Ssa gene family. Ssa1p maintains secretory precursors in a translocation-competent state and interacts with Ydj1p, a DnaJ homologue. Although it has been proposed that Ydj1p stimulates the ATPase activity of Ssa1p to release preproteins and engineer translocation, support for this model is incomplete. To this end, mutations in the ATP-binding pocket of SSA1 were constructed and examined both in vivo and in vitro. Expression of the mutant Ssa1p's slows wild-type cell growth, is insufficient to support life in the absence of functional Ssa1p, and results in a dominant effect on post-translational translocation. The ATPase activity of the purified mutant proteins was not enhanced by Ydj1p and the mutant proteins could not bind an unfolded polypeptide substrate. Our data suggest that a productive interaction between Ssa1p and Ydj1p is required to promote protein translocation. 相似文献
19.
The endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae contains of proteolytic system able to selectively degrade misfolded lumenal secretory proteins. For examination of the components involved in this degradation process, mutants were isolated. They could be divided into four complementation groups. The mutations led to stabilization of two different substrates for this process. The mutant classes were called ''der'' for ''degradation in the ER''. DER1 was cloned by complementation of the der1-2 mutation. The DER1 gene codes for a novel, hydrophobic protein, that is localized to the ER. Deletion of DER1 abolished degradation of the substrate proteins. The function of the Der1 protein seems to be specifically required for the degradation process associated with the ER. The depletion of Der1 from cells causes neither detectable growth phenotypes nor a general accumulation of unfolded proteins in the ER. In DER1-deleted cells, a substrate protein for ER degradation is retained in the ER by the same mechanism which also retains lumenal ER residents. This suggests that DER1 acts in a process that directly removes protein from the folding environment of the ER. 相似文献
20.
Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo 下载免费PDF全文
The translocation of secretory polypeptides into the endoplasmic reticulum (ER) occurs at the translocon, a pore-forming structure that orchestrates the transport and maturation of polypeptides at the ER membrane. In yeast, targeting of secretory precursors to the translocon can occur by two distinct pathways that are distinguished by their dependence upon the signal recognition particle (SRP). The SRP-dependent pathway requires SRP and its membrane-bound receptor, whereas the SRP-independent pathway requires a separate receptor complex consisting of Sec62p, Sec63p, Sec71p, Sec72p plus lumenal Kar2p/BiP. Here we demonstrate that Sec63p and Kar2p are also required for the SRP-dependent targeting pathway in vivo. Furthermore, we demonstrate multiple roles for Sec63p, at least one of which is exclusive to the SRP-independent pathway. 相似文献