首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DC-SIGN, a type II membrane-spanning C-type lectin that is expressed on the surface of dendritic cells (DC), captures and promotes human and simian immunodeficiency virus (HIV and SIV) infection of CD4(+) T cells in trans. To better understand the mechanism of DC-SIGN-mediated virus transmission, we generated and functionally evaluated a panel of seven monoclonal antibodies (MAbs) against DC-SIGN family molecules. Six of the MAbs reacted with myeloid-lineage DC, whereas one MAb preferentially bound DC-SIGNR/L-SIGN, a homolog of DC-SIGN. Characterization of hematopoietic cells also revealed that stimulation of monocytes with interleukin-4 (IL-4) or IL-13 was sufficient to induce expression of DC-SIGN. All DC-SIGN-reactive MAbs competed with intercellular adhesion molecule 3 (ICAM-3) for adhesion to DC-SIGN and blocked HIV-1 transmission to T cells that was mediated by THP-1 cells expressing DC-SIGN. Similar but less efficient MAb blocking of DC-mediated HIV-1 transmission was observed, indicating that HIV-1 transmission to target cells via DC may not be dependent solely on DC-SIGN. Attempts to neutralize DC-SIGN capture and transmission of HIV-1 with soluble ICAM-3 prophylaxis were limited in success, with a maximal inhibition of 60%. In addition, disrupting DC-SIGN/ICAM-3 interactions between cells with MAbs did not impair DC-SIGN-mediated HIV-1 transmission. Finally, forced expression of ICAM-3 on target cells did not increase their susceptibility to HIV-1 transmission mediated by DC-SIGN. While these findings do not discount the role of intercellular contact in facilitating HIV-1 transmission, our in vitro data indicate that DC-SIGN interactions with ICAM-3 do not promote DC-SIGN-mediated virus transmission.  相似文献   

2.
Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans-infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactose-containing gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans-infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans-infection.  相似文献   

3.
Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARγ and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARγ and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARγ and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission.  相似文献   

4.
Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4(+) Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.  相似文献   

5.
Dendritic cells (DCs) potently stimulate the cell-cell transmission of human immunodeficiency virus type 1 (HIV-1). However, the mechanisms that underlie DC transmission of HIV-1 to CD4+ T cells are not fully understood. DC-SIGN, a C-type lectin, efficiently promotes HIV-1 trans infection. DC-SIGN is expressed in monocyte-derived DCs (MDDCs), macrophage subsets, activated B lymphocytes, and various mucosal tissues. MDDC-mediated HIV-1 transmission to CD4+ T cells involves DC-SIGN-dependent and -independent mechanisms. DC-SIGN transmission of HIV-1 depends on the donor cell type. HIV-1 Nef can upregulate DC-SIGN expression and promote DC-T-cell clustering and HIV-1 spread. Nef also downregulates CD4 expression; however, the effect of the CD4 downmodulation on DC-mediated HIV-1 transmission has not been examined. Here, we report that CD4 expression levels correlate with inefficient HIV-1 transmission by monocytic cells expressing DC-SIGN. Expression of CD4 on Raji B cells strongly impaired DC-SIGN-mediated HIV-1 transmission to T cells. By contrast, enhanced HIV-1 transmission was observed when CD4 molecules on MDDCs and DC-SIGN-CD4-expressing cell lines were blocked with specific antibodies. Coexpression of CD4 and DC-SIGN in Raji cells promoted the internalization and intracellular retention of HIV-1. Interestingly, internalized HIV-1 particles were sorted and confined to late endosomal compartments that were positive for CD63 and CD81. Furthermore, in HIV-1-infected MDDCs, significant downregulation of CD4 by Nef expression correlated with enhanced viral transmission. These results suggest that CD4, which is present at various levels in DC-SIGN-positive primary cells, is a key regulator of HIV-1 transmission.  相似文献   

6.
The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV-1 to T cells. DC-SIGN is also important in the initiation of immune responses by regulating DC-T cell interactions through intercellular adhesion molecule 3 (ICAM-3). We have characterized the mechanism of ligand binding by DC-SIGN and identified the crucial amino acids involved in this process. Strikingly, the HIV-1 gp120 binding site in DC-SIGN is different from that of ICAM-3, consistent with the observation that glycosylation of gp120, in contrast to ICAM-3, is not crucial to the interaction with DC-SIGN. A specific mutation in DC-SIGN abrogated ICAM-3 binding, whereas the HIV-1 gp120 interaction was unaffected. This DC-SIGN mutant captured HIV-1 and infected T cells in trans as efficiently as wild-type DC-SIGN, demonstrating that ICAM-3 binding is not necessary for HIV-1 transmission. This study provides a basis for the design of drugs that inhibit or alter interactions of DC-SIGN with gp120 but not with ICAM-3 or vice versa and that have a therapeutic value in immunological diseases and/or HIV-1 infections.  相似文献   

7.
Interactions of human immunodeficiency virus type 1 (HIV-1) with immature dendritic cells (DC) are believed to be multifactorial and involve binding to the CD4 antigen, DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), mannose binding C-type lectin receptors (MCLR), and heparan sulfate proteoglycans (HSPG). In this study we assessed the relative contributions of these previously defined virus attachment factors to HIV binding and accumulation in DC and the subsequent transfer of the bound virus particle to CD4(+) T cells. Using competitive inhibitors of HIV-1 attachment to DC, we have identified the existence of DC-SIGN-, MCLR-, and HSPG-independent mechanism(s) of HIV attachment and internalization. Furthermore, virus particles bound by DC independently of CD4, DC-SIGN, MCLR, and HSPG are efficiently transmitted to T cells. Treatment of virus particles with the protease subtilisin or treatment of immature DC with trypsin significantly reduced virus binding, thus demonstrating the role of HIV envelope glycoprotein interactions with unidentified DC-surface factor(s). Finally, this DC-mediated virus binding and internalization are dependent on lipid rafts. We propose that pathways to HIV-1 attachment and uptake in DC exhibit functional redundancy; that is, they are made up of multiple independent activities that can, at least in part, compensate for one another.  相似文献   

8.
Dendritic cells (DCs) enhance human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) T lymphocytes in trans. The C-type lectin DC-SIGN, expressed on DCs, binds to the HIV-1 envelope glycoprotein gp120 and confers upon some cell lines the capacity to enhance trans-infection. Using a short hairpin RNA approach, we demonstrate that DC-SIGN is not required for efficient trans-enhancement by DCs. In addition, the DC-SIGN ligand mannan and an anti-DC-SIGN antibody did not inhibit DC-mediated enhancement. HIV-1 particles were internalized and were protected from protease treatment following binding to DCs, but not from binding to DC-SIGN-expressing Raji cells. Thus, DC-SIGN is not required for DC-mediated trans-enhancement of HIV infectivity.  相似文献   

9.
The C-type lectins DC-SIGN and DC-SIGNR efficiently bind human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains and can transmit bound virus to adjacent CD4-positive cells. DC-SIGN also binds efficiently to the Ebola virus glycoprotein, enhancing Ebola virus infection. DC-SIGN is thought to be responsible for the ability of dendritic cells (DCs) to capture HIV and transmit it to T cells, thus promoting HIV dissemination in vitro and perhaps in vivo as well. To investigate DC-SIGN function and expression levels on DCs, we characterized a panel of monoclonal antibodies (MAbs) directed against the carbohydrate recognition domain of DC-SIGN. Using quantitative fluorescence-activated cell sorter technology, we found that DC-SIGN is highly expressed on immature monocyte-derived DCs, with at least 100,000 copies and often in excess of 250,000 copies per DC. There was modest variation (three- to fourfold) in DC-SIGN expression levels between individuals and between DCs isolated from the same individual at different times. Several MAbs efficiently blocked virus binding to cell lines expressing human or rhesus DC-SIGN, preventing HIV and SIV transmission. Interactions with Ebola virus pseudotypes were also blocked efficiently. Despite their ability to block virus-DC-SIGN interactions on cell lines, these antibodies only inhibited transmission of virus from DCs by approximately 50% or less. These results indicate that factors other than DC-SIGN may play important roles in the ability of DCs to capture and transmit HIV.  相似文献   

10.
During HIV-1 infection, dendritic cells (DC) facilitate dissemination of HIV-1 while trying to trigger adaptive antiviral immune responses. We examined whether increased HIV-1 capture in DC matured with LPS results in more efficient Ag presentation to HIV-1-specific CD4(+) and CD8(+) T cells. To block the DC-mediated trans-infection of HIV-1 and maximize Ag loading, we also evaluated a noninfectious integrase-deficient HIV-1 isolate, HIV(NL4-3ΔIN). We showed that higher viral capture of DC did not guarantee better Ag presentation or T cell activation. Greater HIV(NL4-3) uptake by fully LPS-matured DC resulted in higher viral transmission to target cells but poorer stimulation of HIV-1-specific CD4(+) and CD8(+) T cells. Conversely, maturation of DC with LPS during, but not before, viral loading enhanced both HLA-I and HLA-II HIV-1-derived Ag presentation. In contrast, DC maturation with the clinical-grade mixture consisting of IL-1β, TNF-α, IL-6, and PGE(2) during viral uptake only stimulated HIV-1-specific CD8(+) T cells. Hence, DC maturation state, activation stimulus, and time lag between DC maturation and Ag loading impact HIV-1 capture and virus Ag presentation. Our results demonstrate a dissociation between the capacity to capture HIV-1 and to present viral Ags. Integrase-deficient HIV(NL4-3ΔIN) was also efficiently captured and presented by DC through the HLA-I and HLA-II pathways but in the absence of viral dissemination. HIV(NL4-3ΔIN) seems to be an attractive candidate to be explored. These results provide new insights into DC biology and have implications in the optimization of DC-based immunotherapy against HIV-1 infection.  相似文献   

11.
Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naïve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus.  相似文献   

12.
Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC. DC were generated from CD14+ blood cells or obtained from cadaveric human skin. The MAbs prevented viral entry into purified DC and the ensuing productive infection in DC/T-cell cultures. When DC were first pulsed with HIV-1, MAbs blocked the subsequent transmission to unstimulated CD3+ T cells. Thus, neutralizing antibodies can block HIV-1 infection of DC and the cell-to-cell transmission of virus from infected DC to T cells. These data suggest that neutralizing antibodies could interrupt the initial events associated with mucosal transmission and regional spread of HIV-1.  相似文献   

13.
In this study, we identify determinants in dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) necessary for human immunodeficiency virus, type 1 (HIV-1), transmission. Although human B cell lines expressing DC-SIGN efficiently capture and transmit HIV-1 to susceptible target cells, cells expressing the related molecule liver/lymph node-specific ICAM-3-grabbing nonintegrin (L-SIGN) do not. To understand the differences between DC-SIGN and L-SIGN that affect HIV-1 interactions, we developed Raji B cell lines expressing different DC-SIGN/L-SIGN chimeras. Testing of the chimeras demonstrated that replacement of the DC-SIGN carbohydrate-recognition domain (CRD) with that of L-SIGN was sufficient to impair virus binding and prevent transmission. Conversely, the ability to bind and transmit HIV-1 was conferred to L-SIGN chimeras containing the DC-SIGN CRD. We identified Trp-258 in the DC-SIGN CRD to be essential for HIV-1 transmission. Although introduction of a K270W mutation at the same position in L-SIGN was insufficient for HIV-1 binding, an L-SIGN mutant molecule with K270W and a C-terminal DC-SIGN CRD subdomain transmitted HIV-1. These data suggest that DC-SIGN structural elements distinct from the oligosaccharide-binding site are required for HIV-1 glycoprotein selectivity.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4+ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4+ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now. Here, we demonstrate that the type I IFN-inducible Siglec-1, CD169, is the DC receptor that captures HIV in a GM3-dependent manner. Selective downregulation of CD169 expression, neutralizing CD169 function, or depletion of GSLs from virions, abrogated DC-mediated HIV-1 capture and trans infection, while exogenous expression of CD169 in receptor-naïve cells rescued GSL-dependent capture and trans infection. HIV-1 particles co-localized with CD169 on DC surface immediately following capture and subsequently within non-lysosomal compartments that redistributed to the DC – T cell infectious synapses upon initiation of T cell contact. Together, these findings describe a novel mechanism of pathogen parasitization of host encoded cellular recognition machinery (GM3 – CD169 interaction) for DC-dependent HIV dissemination.  相似文献   

15.
Wang JH  Janas AM  Olson WJ  Wu L 《Journal of virology》2007,81(17):8933-8943
Dendritic cells (DCs) potently stimulate the transmission of human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells. Immature DCs (iDCs) located in submucosal tissues can capture HIV-1 and migrate to lymphoid tissues, where they become mature DCs (mDCs) for effective antigen presentation. DC maturation promotes HIV-1 transmission; however, the underlying mechanisms remain unclear. Here we have compared monocyte-derived iDCs and mDCs for their efficiencies and mechanisms of HIV-1 transmission. We have found that mDCs significantly facilitate HIV-1 endocytosis and efficiently concentrate HIV-1 at virological synapses, which contributes to mDC-enhanced viral transmission, at least in part. mDCs were more efficient than iDCs in transferring HIV-1 to various types of target cells independently of C-type lectins, which partially accounted for iDC-mediated HIV-1 transmission. Efficient HIV-1 trans-infection mediated by iDCs and mDCs required contact between DCs and target cells. Moreover, rapid HIV-1 degradation occurred in both iDCs and mDCs, which correlated with the lack of HIV-1 retention-mediated long-term viral transmission. Our results provide new insights into the mechanisms underlying DC-mediated HIV-1 transmission, suggesting that HIV-1 exploits mDCs to facilitate its dissemination within lymphoid tissues.  相似文献   

16.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

17.
Dendritic cells (DCs) are specialized antigen-presenting cells. However, DCs exposed to human immunodeficiency virus type 1 (HIV-1) are also able to transmit a vigorous cytopathic infection to CD4(+) T cells, a process that has been frequently related to the ability of DC-SIGN to bind HIV-1 envelope glycoproteins. The maturation of DCs can increase the efficiency of HIV-1 transmission through trans infection. We aimed to comparatively study the effect of maturation in monocyte-derived DCs (MDDCs) and blood-derived myeloid DCs during the HIV-1 capture process. In vitro capture and transmission of envelope-pseudotyped HIV-1 and its homologous replication-competent virus to susceptible target cells were assessed by p24(gag) detection, luciferase activity, and both confocal and electron microscopy. Maturation of MDDCs or myeloid DCs enhanced the active capture of HIV-1 in a DC-SIGN- and viral envelope glycoprotein-independent manner, increasing the life span of trapped virus. Moreover, higher viral transmission of mature DCs to CD4(+) T cells was highly dependent on active viral capture, a process mediated through cholesterol-enriched domains. Mature DCs concentrated captured virus in a single large vesicle staining for CD81 and CD63 tetraspanins, while immature DCs lacked these structures, suggesting different intracellular trafficking processes. These observations help to explain the greater ability of mature DCs to transfer HIV-1 to T lymphocytes, a process that can potentially contribute to the viral dissemination at lymph nodes in vivo, where viral replication takes place and there is a continuous interaction between susceptible T cells and mature DCs.  相似文献   

18.

Background

Dendritic cell (DC) transmission of human immunodeficiency virus (HIV) to CD4+ T cells occurs across a point of cell-cell contact referred to as the infectious synapse. The relationship between the infectious synapse and the classically defined immunological synapse is not currently understood. We have recently demonstrated that human B cells expressing exogenous DC-SIGN, DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin, efficiently transmit captured HIV type 1 (HIV-1) to CD4+ T cells. K562, another human cell line of hematopoietic origin that has been extensively used in functional analyses of DC-SIGN and related molecules, lacks the principal molecules involved in the formation of immunological synaptic junctions, namely major histocompatibility complex (MHC) class II molecules and leukocyte function-associated antigen-1 (LFA-1). We thus examined whether K562 erythroleukemic cells could recapitulate efficient DC-SIGN-mediated HIV-1 transmission (DMHT).

Results

Here we demonstrate that DMHT requires cell-cell contact. Despite similar expression of functional DC-SIGN, K562/DC-SIGN cells were inefficient in the transmission of HIV-1 to CD4+ T cells when compared with Raji/DC-SIGN cells. Expression of MHC class II molecules or LFA-1 on K562/DC-SIGN cells was insufficient to rescue HIV-1 transmission efficiency. Strikingly, we observed that co-culture of K562 cells with Raji/DC-SIGN cells impaired DMHT to CD4+ T cells. The K562 cell inhibition of transmission was not directly exerted on the CD4+ T cell targets and required contact between K562 and Raji/DC-SIGN cells.

Conclusions

DMHT is cell type dependent and requires cell-cell contact. We also find that the cellular milieu can negatively regulate DC-SIGN transmission of HIV-1 in trans.  相似文献   

19.
Platelets can engulf human immunodeficiency virus type 1 (HIV-1), and a significant amount of HIV-1 in the blood of infected individuals is associated with these cells. However, it is unclear how platelets capture HIV-1 and whether platelet-associated virus remains infectious. DC-SIGN and other lectins contribute to capture of HIV-1 by dendritic cells (DCs) and facilitate HIV-1 spread in DC/T-cell cocultures. Here, we show that platelets express both the C-type lectin-like receptor 2 (CLEC-2) and low levels of DC-SIGN. CLEC-2 bound to HIV-1, irrespective of the presence of the viral envelope protein, and facilitated HIV-1 capture by platelets. However, a substantial fraction of the HIV-1 binding activity of platelets was dependent on DC-SIGN. A combination of DC-SIGN and CLEC-2 inhibitors strongly reduced HIV-1 association with platelets, indicating that these lectins are required for efficient HIV-1 binding to platelets. Captured HIV-1 was maintained in an infectious state over several days, suggesting that HIV-1 can escape degradation by platelets and might use these cells to promote its spread. Our results identify CLEC-2 as a novel HIV-1 attachment factor and provide evidence that platelets capture and transfer infectious HIV-1 via DC-SIGN and CLEC-2, thereby possibly facilitating HIV-1 dissemination in infected patients.  相似文献   

20.
The natural function of dendritic cells (DCs) is to capture and degrade pathogens for Ag presentation. However, HIV-1 can evade viral degradation by DCs and hijack DCs for migration to susceptible CD4(+) T lymphocytes. It is unknown what factors decide whether a virus is degraded or transmitted to T cells. The interaction of DCs with HIV-1 involves C-type lectin receptors, such as DC-specific ICAM-3-grabbing nonintegrin, which bind to the envelope glycoprotein complex (Env), which is decorated heavily with N-linked glycans. We hypothesized that the saccharide composition of the Env N-glycans is involved in avoiding viral degradation and Ag presentation, as well as preserving infectious virus for the transmission to target cells. Therefore, we studied the fate of normally glycosylated virus versus oligomannose-enriched virus in DCs. Changing the heterogeneous N-linked glycan composition of Env to uniform oligomannose N-glycans increased the affinity of HIV-1 for DC-specific ICAM-3-grabbing nonintegrin and enhanced the capture of HIV-1 by immature DCs; however, it decreased the subsequent transmission to target cells. Oligomannose-enriched HIV-1 was directed more efficiently into the endocytic pathway, resulting in enhanced viral degradation and reduced virus transfer to target cells. Furthermore, Env containing exclusively oligomannose N-glycans was presented to Env-specific CD4(+) T cells more efficiently. Taken together, our results showed that the HIV-1 N-glycan composition plays a crucial role in the balance between DC-mediated Ag degradation and presentation and DC-mediated virus transmission to target cells. This finding may have implications for the early events in HIV-1 transmission and the induction of antiviral immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号